dtas_analysis/dtas_analysis.Rnw
2018-05-21 15:56:24 +01:00

334 lines
15 KiB
Plaintext

\documentclass{article}
\usepackage{geometry}
\geometry{
a4paper,
total={170mm,257mm},
left=20mm,
top=20mm,
}
\title{Analysis of DTAS footprint}
\author{Dr. Jeremy H. Kidwell}
\date{17 May 2018}
\begin{document}
\SweaveOpts{concordance=TRUE}
<<eval=TRUE, include=FALSE>>=
# Some opening notes for the stray reader of this code
# This is pretty messy stuff, pulled together in some haste.
# I'm aware that there are tons of places where repeated code
# should be set up as libraries - feel free to put in a
# pull request to this effect!
#
# I'm also aware that my method of creating a table of quantiles
# is massively inefficient. I'm sure there's a brisk way to
# do this, but couldn't find anything workable.
# As always, code review much appreciated and comments welcome!
# load libraries needed for operations
require(sp) # required for rgdal
require(rgdal) # required for readOGR
require(GISTools) # required for poly.counts
require(maptools) # required for spTransform
require(RColorBrewer) # required for pretty colours
require(xtable)
# Preliminaries------------------------------------------------
# Define CRS for here and later--------------------------------
wgs84 = '+proj=longlat +datum=WGS84'
bng = "+proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717 +x_0=400000
+y_0=-100000 +datum=OSGB36 +units=m +no_defs +ellps=airy
+towgs84=446.448,-125.157,542.060,0.1502,0.2470,0.8421,-20.4894"
setwd("~/Dropbox/writing_articles_chapters/201805_dtas")
# Create data directory if needed:
if (dir.exists("data") == FALSE) {
dir.create("data")
}
# 1. Load in datasets
# read in polygon for UK admin boundaries----------------------
admin <- readOGR("data", "scotland_laulevel1_2011")
# transform CRS to wgs84 for comparisons below
admin.wgs <- spTransform(admin, CRS("+init=epsg:4326"))
# read in relevant polygons, Scottish Index of Multiple deprivation (already WGS84)
simd <- readOGR("data", "sg_simd_2016")
# Load dtas dataset------------------------------------
dtas <- read.csv("data/dtas_4.0.csv")
coordinates(dtas) <- c("X", "Y")
proj4string(dtas) <- proj4string(simd)
# transform CRS to wgs84 for comparisons below
dtas.wgs <- spTransform(dtas, CRS("+init=epsg:4326"))
# Load GWSF dataset ----------------------
# gwsf <- readOGR("data", "gwsf_groups_gb_sct")
# transform CRS on admin (from BNG) to wgs84 for comparisons below
# gwsf.wgs <- spTransform(gwsf, CRS("+init=epsg:4326"))
# Simplify to third decimal point for accurate representation of coordinate precision
# JK Note: TBD!
@
\maketitle
\Large\textbf{Presentation for Development Trust Association Scotland}
\section*{Introduction}
\par
The following represents some provisional analysis compiled by Dr Jeremy Kidwell for DTAS. This report has been written as reproducible research, so anyone can view the code, download the underlying data and reproduce these results. I hope that other scholars and third sector community networks may find this useful for research and strategic thinking.
\section{Community Anchors: Development Trusts in Deprived Areas}
<<>>=
# Part I - Generate tables and plots based on SIMD ranks
# Subset SIMD for bottom 5/10/15% by overall rank
simd.bottom15r <- simd[ which(simd$rank < 1047),]
simd.bottom10r <- simd[ which(simd$rank < 698),]
simd.bottom5r <- simd[ which(simd$rank < 349),]
# Subset SIMD for bottom 5/10/15% by income domain rank
simd.bottom15incr <- simd[ which(simd$incrank < 1047),]
simd.bottom10incr <- simd[ which(simd$incrank < 698),]
simd.bottom5incr <- simd[ which(simd$incrank < 349),]
# Subset SIMD for bottom 5/10/15% by income domain rank
simd.bottom15empr <- simd[ which(simd$emprank < 1047),]
simd.bottom10empr <- simd[ which(simd$emprank < 698),]
simd.bottom5empr <- simd[ which(simd$emprank < 349),]
# Now generate subsetted SPDF which only includes dtas points which are
# located in remaining (subsetted) SIMD polygons
dtas.simd.bottom15r <- dtas[!is.na(over(dtas, geometry(simd.bottom15r))),]
dtas.simd.bottom10r <- dtas[!is.na(over(dtas, geometry(simd.bottom10r))),]
dtas.simd.bottom5r <- dtas[!is.na(over(dtas, geometry(simd.bottom5r))),]
# Add data from relevant SIMD polygons for each row in dtas DF
dtas.simd.bottom15r@data <- cbind(dtas.simd.bottom15r@data,over(dtas.simd.bottom15r,simd.bottom15r))
dtas.simd.bottom10r@data <- cbind(dtas.simd.bottom10r@data,over(dtas.simd.bottom10r,simd.bottom10r))
dtas.simd.bottom5r@data <- cbind(dtas.simd.bottom5r@data,over(dtas.simd.bottom5r,simd.bottom5r))
# Convert to dataframe, strip out unnecessary columns, and sort by rank
dtas.simd.bottom15r.tidy <- data.frame("name"=dtas.simd.bottom15r$name,"rank"=dtas.simd.bottom15r$rank)
dtas.simd.bottom15r.tidy <- dtas.simd.bottom15r.tidy[with(dtas.simd.bottom15r.tidy, order(rank)), ]
dtas.simd.bottom10r.tidy <- data.frame("name"=dtas.simd.bottom10r$name,"rank"=dtas.simd.bottom10r$rank)
dtas.simd.bottom10r.tidy <- dtas.simd.bottom10r.tidy[with(dtas.simd.bottom10r.tidy, order(rank)), ]
dtas.simd.bottom5r.tidy <- data.frame("name"=dtas.simd.bottom5r$name,"rank"=dtas.simd.bottom5r$rank)
dtas.simd.bottom5r.tidy <- dtas.simd.bottom5r.tidy[with(dtas.simd.bottom5r.tidy, order(rank)), ]
# Export tables to PDF, with titles and plots ahead of each table (admin boundaries, add all points, add subset in red)
# End Part I
@
\subsection{DTAS Groups Located within the the lowest 15 percent SIMD ranked areas}
\par
\begin{figure}[h]
<<fig=TRUE>>=
plot(admin)
plot(dtas, add = TRUE)
plot(dtas.simd.bottom15r, add = TRUE, col="Red")
@
\caption
{Map of all DTAS groups, with those located within 15 percent most deprived areas in red.}
\end{figure}
<<fig=TRUE>>=
xt <- xtable(dtas.simd.bottom15r.tidy, caption = "table of DTAS groups in bottom 15%")
print(xt,
tabular.environment = "longtable",
sanitize.colnames.function = function(x){x},
include.rownames = FALSE,
floating = FALSE)
@
\section{Part II: Comparing presence of DTAS to other similar features}
\par \\
It may be useful to know the number of groups present, but we can illuminate this information by testing out how frequently different types of groups appear in these areas.
<<>>=
# Part II - Calculate coincidence of other features
# Load in POI table
# I'm going to take some shortcuts here, preventing this code from being truly reproducible
# because the poi dataset is really huge - I've already downloaded and filtered to specific codes for features
# so code immediately below is untested. Will need to adjust below to the actual code I'm working with eventually.
## Skip ==>
# poi <- read.csv("data/poi.csv", header = FALSE, sep = "|")
# coordinates(poi) <- c("Feature Easting", "Feature Northing")
# proj4string(poi) <- proj4string(CRS(bng))
## transform CRS on churches (from BNG) to wgs84 for comparisons below
# poi.wgs <- spTransform(poi, CRS(wgs84))
## subsets
#poi.pubs <- poi[!is.na(poi[3] = "01020034")]
#poi.chequecashing <- poi[!is.na(poi[3] = "02090142")]
#poi.pawnbrokers <- poi[!is.na(poi[3] = "02090151")]
#poi.worship <- poi[!is.na(poi[3] = "06340459")]
# ==> to here for now
# Load in retail data from geolytics dataset
# from here: https://geolytix.co.uk/?retail_points
poi.grocery <- read.csv("data/retailpoints_version11_dec17.txt", sep = "\t")
# select useful columns
poi.grocery <- subset(poi.grocery, select = c("retailer", "store_name", "long_wgs", "lat_wgs"))
# convert to spdf
coordinates(poi.grocery) <- c("long_wgs", "lat_wgs")
proj4string(poi.grocery) <- CRS("+init=epsg:4326")
# filter out non-Scottish data
poi.grocery <- poi.grocery[!is.na(over(poi.grocery, geometry(admin.wgs))),]
# Load in British pubs from Ordnance survey dataset
poi.pubs <- read.csv("data/poi_pubs.csv", header = FALSE, sep = "|")
# select useful columns
poi.pubs <- subset(poi.pubs, select = c("V1", "V2", "V3", "V4", "V5"))
# rename columns to tidier names
colnames(poi.pubs) <- c("refnum", "name", "code", "x", "y")
coordinates(poi.pubs) <- c("x", "y")
proj4string(poi.pubs) <- CRS("+init=epsg:27700")
# transform CRS on pubs (from BNG) to wgs84 for comparisons below
poi.pubs.wgs <- spTransform(poi.pubs, CRS("+init=epsg:4326"))
# filter out non-Scottish pubs
poi.pubs.wgs <- poi.pubs.wgs[!is.na(over(poi.pubs.wgs, geometry(admin.wgs))),]
# Load in check cashing from Ordnance survey dataset
poi.checkcashing <- read.csv("data/poi_chequecashing.csv", header = FALSE, sep = "|")
# select useful columns
poi.checkcashing <- subset(poi.checkcashing, select = c("V1", "V2", "V3", "V4", "V5"))
# rename columns to tidier names
colnames(poi.checkcashing) <- c("refnum", "name", "code", "x", "y")
coordinates(poi.checkcashing) <- c("x", "y")
proj4string(poi.checkcashing) <- CRS("+init=epsg:27700")
# transform CRS on pubs (from BNG) to wgs84 for comparisons below
poi.checkcashing.wgs <- spTransform(poi.checkcashing, CRS("+init=epsg:4326"))
# filter out non-Scottish (hah!) check cashing shops
poi.checkcashing.wgs <- poi.checkcashing.wgs[!is.na(over(poi.checkcashing.wgs, geometry(admin.wgs))),]
# Load in pawnbrokers from Ordnance survey dataset
poi.pawnbrokers <- read.csv("data/poi_pawnbrokers.csv", header = FALSE, sep = "|")
# select useful columns
poi.pawnbrokers <- subset(poi.pawnbrokers, select = c("V1", "V2", "V3", "V4", "V5"))
# rename columns to tidier names
colnames(poi.pawnbrokers) <- c("refnum", "name", "code", "x", "y")
coordinates(poi.pawnbrokers) <- c("x", "y")
proj4string(poi.pawnbrokers) <- CRS("+init=epsg:27700")
# transform CRS on pawnbrokers (from BNG) to wgs84 for comparisons below
poi.pawnbrokers.wgs <- spTransform(poi.pawnbrokers, CRS("+init=epsg:4326"))
# filter out non-Scottish (hah!) pawnbrokers
poi.pawnbrokers.wgs <- poi.pawnbrokers.wgs[!is.na(over(poi.pawnbrokers.wgs, geometry(admin.wgs))),]
# Load in places of worship from Ordnance survey dataset
poi.pow <- read.csv("data/poi_pow.csv", header = FALSE, sep = "|")
# select useful columns
poi.pow <- subset(poi.pow, select = c("V1", "V2", "V3", "V4", "V5"))
# rename columns to tidier names
colnames(poi.pow) <- c("refnum", "name", "code", "x", "y")
coordinates(poi.pow) <- c("x", "y")
proj4string(poi.pow) <- CRS("+init=epsg:27700")
# transform CRS on pubs (from BNG) to wgs84 for comparisons below
poi.pow.wgs <- spTransform(poi.pow, CRS("+init=epsg:4326"))
# filter out non-Scottish (hah!) check cashing shops
poi.pow.wgs <- poi.pow.wgs[!is.na(over(poi.pow.wgs, geometry(admin.wgs))),]
# create WGS versions of SIMD subsets from above for comparisons below
simd.bottom15r.wgs <- spTransform(simd.bottom15r, CRS("+init=epsg:4326"))
simd.bottom10r.wgs <- spTransform(simd.bottom10r, CRS("+init=epsg:4326"))
simd.bottom5r.wgs <- spTransform(simd.bottom5r, CRS("+init=epsg:4326"))
# Test it out with a quick plot
# plot(poi.pubs.wgs)
# run further subsetting, as above, for specific bands of simd
grocery.simd.bottom15r.wgs <- poi.grocery[!is.na(over(poi.grocery, geometry(simd.bottom15r.wgs))),]
grocery.simd.bottom10r.wgs <- poi.grocery[!is.na(over(poi.grocery, geometry(simd.bottom10r.wgs))),]
grocery.simd.bottom5r.wgs <- poi.grocery[!is.na(over(poi.grocery, geometry(simd.bottom5r.wgs))),]
pubs.simd.bottom15r.wgs <- poi.pubs.wgs[!is.na(over(poi.pubs.wgs, geometry(simd.bottom15r.wgs))),]
pubs.simd.bottom10r.wgs <- poi.pubs.wgs[!is.na(over(poi.pubs.wgs, geometry(simd.bottom10r.wgs))),]
pubs.simd.bottom5r.wgs <- poi.pubs.wgs[!is.na(over(poi.pubs.wgs, geometry(simd.bottom5r.wgs))),]
pawnbrokers.simd.bottom15r.wgs <- poi.pawnbrokers.wgs[!is.na(over(poi.pawnbrokers.wgs, geometry(simd.bottom15r.wgs))),]
checkcashing.simd.bottom15r.wgs <- poi.checkcashing.wgs[!is.na(over(poi.checkcashing.wgs, geometry(simd.bottom15r.wgs))),]
pow.simd.bottom15r.wgs <- poi.pow.wgs[!is.na(over(poi.pow.wgs, geometry(simd.bottom15r.wgs))),]
@
\par \\
Let's begin with DTAS by itself. Measured against the whole of DTAS's network, those groups highlighted above represent
<<>>=
# Part II.2 Run some calculations on presence for various types of entities
# Calculate total number of DTAS "community anchors" within bottom 15%
length(dtas.simd.bottom15r$rank) / length(dtas$name)
@
of the whole network.
\par \\
We can compare this frequency against some other features. The ordnance survey tells us that there are, for example, a totle of \Sexpr{length(poi.pubs.wgs$name)} pubs in Scotland. The total numnber of Pubs located within these deprived areas noted above is
<<>>=
# Calculate percentage of total pubs in Scotland located within bottom 15% of IMD by rank
length(pubs.simd.bottom15r.wgs$name) / length(poi.pubs.wgs$name)
@
\par \\
To take another example, there are (according to the Ordnance Survey \Sexpr{length(poi.pow.wgs$name)} places of worship in Scotland. Of all these, our deprived areas have:
<<>>=
# places of worship
length(pow.simd.bottom15r.wgs$name) / length(poi.pow.wgs$name)
@
\par \\
Another example we can look at is retail grocery stores. A geospatial company called GeoLytix publishes a complete set of British retailers on a regular basis. As of last November, they indicated that there were \Sexpr{length(poi.grocery$store_name)} grocery stores in Scotland. Within our deprived areas, this represents
<<>>=
# Calculate percentage of total retail grocers in Scotland
# located within bottom 15% of IMD by rank
length(grocery.simd.bottom15r.wgs$store_name) / length(poi.grocery$store_name)
# drill a bit deeper - morrisons stores
morrisons.scotland <- poi.grocery[poi.grocery$retailer == "Morrisons", ]
morrisons.bottom15r.scotland <- grocery.simd.bottom15r.wgs[grocery.simd.bottom15r.wgs$retailer == "Morrisons", ]
@
\par \\
We can break this down by brand to get a more interesting indication. There are \Sexpr{length(morrisons.scotland)} Morrisons brand stores in Scotland. Of these, the following percentage are located in our deprived areas:
<<>>=
length(morrisons.bottom15r.scotland$store_name) / length(morrisons.scotland)
# sainsburys
sainsburys.scotland <- poi.grocery[poi.grocery$retailer == "Sainsburys", ]
sainsburys.bottom15r.scotland <- grocery.simd.bottom15r.wgs[grocery.simd.bottom15r.wgs$retailer == "Sainsburys", ]
@
\par \\
We find a contrast by turning to Sainsburys. There are \Sexpr{length(sainsburys.scotland)} of these in Scotland. Represented in our deprived areas are just:
<<>>=
length(sainsburys.bottom15r.scotland$store_name) / length(sainsburys.scotland)
@
\par \\
Sadly, the best bellweather of a deprived area in Scotland isn't any of the above, but rather pawnbrokers (\Sexpr{length(poi.pawnbrokers.wgs$name)}) and check cashing stores (\Sexpr{length(poi.checkcashing.wgs$name)}). You can see these represented on the map below. Of check cashing stores, we find a representation in our areas of \Sexpr{length(checkcashing.simd.bottom15r.wgs$name) / length(poi.checkcashing.wgs$name)}. And pawnbrokers at \Sexpr{length(pawnbrokers.simd.bottom15r.wgs$name) / length(poi.pawnbrokers.wgs$name)}
<<>>=
# check cashing
plot(admin)
plot(poi.checkcashing.wgs, add = TRUE)
plot(checkcashing.simd.bottom15r.wgs, col="blue", add = TRUE)
@
\end{document}