dtas_analysis/community_anchors_2018May19.Rpres
2018-05-21 15:56:24 +01:00

455 lines
18 KiB
Plaintext

Analysing the Development Trust Association Scotland footprint
========================================================
author: Jeremy H. Kidwell, PhD
date: 18 May 2018
autosize: true
Provisional analysis compiled by Dr Jeremy Kidwell for DTAS.
Based on live, open, and reproducible code!
Outline for the day
========================================================
```{r, echo=FALSE, eval=TRUE, include=FALSE}
# Some opening notes for the stray reader of this code
# This is pretty messy stuff, pulled together in some haste.
# I'm aware that there are tons of places where repeated code
# should be set up as libraries - feel free to put in a
# pull request to this effect!
#
# I'm also aware that my method of creating a table of quantiles
# is massively inefficient. I'm sure there's a brisk way to
# do this, but couldn't find anything workable.
# As always, code review much appreciated and comments welcome!
# load libraries needed for operations
require(sp) # required for rgdal
require(rgdal) # required for readOGR
require(GISTools) # required for poly.counts
require(maptools) # required for spTransform
require(RColorBrewer) # required for pretty colours
require(xtable) # required for xtables done below
require(RCurl) # required for dataset downloads using curl
# Preliminaries------------------------------------------------
# Define CRS for here and later--------------------------------
wgs84 = '+proj=longlat +datum=WGS84'
bng = "+proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717 +x_0=400000
+y_0=-100000 +datum=OSGB36 +units=m +no_defs +ellps=airy
+towgs84=446.448,-125.157,542.060,0.1502,0.2470,0.8421,-20.4894"
setwd("~/Dropbox/writing_articles_chapters/201805_dtas")
# Create data directory if needed:
if (dir.exists("data") == FALSE) {
dir.create("data")
}
if (dir.exists("derivedData") == FALSE) {
dir.create("derivedData")
}
if (dir.exists("figures") == FALSE) {
dir.create("figures")
}
# 1. Load in datasets
# read in polygon for UK admin boundaries----------------------
admin <- readOGR("data", "scotland_laulevel1_2011")
# transform CRS to wgs84 for comparisons below
admin.wgs <- spTransform(admin, CRS("+init=epsg:4326"))
# read in relevant polygons, Scottish Index of Multiple deprivation (already WGS84)
http://sedsh127.sedsh.gov.uk/Atom_data/ScotGov/ZippedShapefiles/SG_SIMD_2016.zip
simd <- readOGR("data", "sg_simd_2016")
# Load dtas dataset------------------------------------
dtas <- read.csv("data/dtas_4.0.csv")
coordinates(dtas) <- c("X", "Y")
proj4string(dtas) <- proj4string(simd)
# transform CRS to wgs84 for comparisons below
dtas.wgs <- spTransform(dtas, CRS("+init=epsg:4326"))
# Load GWSF dataset ----------------------
gwsf <- readOGR("data", "gwsf_groups_gb_sct")
# transform CRS on admin (from BNG) to wgs84 for comparisons below
gwsf.wgs <- spTransform(gwsf, CRS("+init=epsg:4326"))
# Simplify to third decimal point for accurate representation of coordinate precision
# JK Note: TBD!
```
- Representation in areas of deprivation
- Mapping community anchors
- Bonus: social media and DTAS
About the research
========================================================
- Begun in 2014 at Ediburgh Uni, now Birmingham
- Driving question: How do we improve visibility and efficacy of community-level work?
- Generating (open access) data sets
- Consultancy as participatory research
- Connecting researchers, policymakers, third sector
Work to Date
========================================================
- Ongoing research partnerships
- Scottish Community Alliance
- DTAS (239 sites)
- Eco-Congregation Scotland (~400) and Eco-Church England & Wales (~2500)
- Christians Against Poverty (600)
- Ecolise (European network of networks)
- Additional data sets produced for
- GWSF, City Farms & Gardens, Community Land Scotland, Church(es) of Scotland, England & Wales...
- Digital "geospatial intelligence" Carto platform up and running
)
```{r, echo=FALSE, eval=TRUE, include=TRUE}
```
1. Focus: DTAS and Deprivation
========================================================
```{r, echo=FALSE, eval=TRUE, include=TRUE}
# Part I - Generate tables and plots based on SIMD ranks
# Subset SIMD for bottom 5/10/15% by overall rank
simd.bottom15r <- simd[ which(simd$rank < 1047),]
simd.bottom10r <- simd[ which(simd$rank < 698),]
simd.bottom5r <- simd[ which(simd$rank < 349),]
# Subset SIMD for bottom 5/10/15% by income domain rank
simd.bottom15incr <- simd[ which(simd$incrank < 1047),]
simd.bottom10incr <- simd[ which(simd$incrank < 698),]
simd.bottom5incr <- simd[ which(simd$incrank < 349),]
# Subset SIMD for bottom 5/10/15% by income domain rank
simd.bottom15empr <- simd[ which(simd$emprank < 1047),]
simd.bottom10empr <- simd[ which(simd$emprank < 698),]
simd.bottom5empr <- simd[ which(simd$emprank < 349),]
# Now generate subsetted SPDF which only includes dtas points which are
# located in remaining (subsetted) SIMD polygons
dtas.simd.bottom15r <- dtas[!is.na(over(dtas, geometry(simd.bottom15r))),]
dtas.simd.bottom10r <- dtas[!is.na(over(dtas, geometry(simd.bottom10r))),]
dtas.simd.bottom5r <- dtas[!is.na(over(dtas, geometry(simd.bottom5r))),]
# Add data from relevant SIMD polygons for each row in dtas DF
dtas.simd.bottom15r@data <- cbind(dtas.simd.bottom15r@data,over(dtas.simd.bottom15r,simd.bottom15r))
dtas.simd.bottom10r@data <- cbind(dtas.simd.bottom10r@data,over(dtas.simd.bottom10r,simd.bottom10r))
dtas.simd.bottom5r@data <- cbind(dtas.simd.bottom5r@data,over(dtas.simd.bottom5r,simd.bottom5r))
# Convert to dataframe, strip out unnecessary columns, and sort by rank
dtas.simd.bottom15r.tidy <- data.frame("name"=dtas.simd.bottom15r$name,"rank"=dtas.simd.bottom15r$rank)
dtas.simd.bottom15r.tidy <- dtas.simd.bottom15r.tidy[with(dtas.simd.bottom15r.tidy, order(rank)), ]
dtas.simd.bottom10r.tidy <- data.frame("name"=dtas.simd.bottom10r$name,"rank"=dtas.simd.bottom10r$rank)
dtas.simd.bottom10r.tidy <- dtas.simd.bottom10r.tidy[with(dtas.simd.bottom10r.tidy, order(rank)), ]
dtas.simd.bottom5r.tidy <- data.frame("name"=dtas.simd.bottom5r$name,"rank"=dtas.simd.bottom5r$rank)
dtas.simd.bottom5r.tidy <- dtas.simd.bottom5r.tidy[with(dtas.simd.bottom5r.tidy, order(rank)), ]
# plot(admin)
plot(dtas)
plot(dtas.simd.bottom15r, add = TRUE, col="Red")
plot(admin, border="grey", lwd=0.25, add = TRUE)
# Export tables to PDF, with titles and plots ahead of each table (admin boundaries, add all points, add subset in red)
# End Part I
```
DTAS Groups Located within 15% most deprived areas
========================================================
```{r, echo=FALSE, eval=TRUE, include=TRUE}
xt <- xtable(dtas.simd.bottom15r.tidy, caption = "table of DTAS groups in bottom 15%")
print(xt,
type = "html",
tabular.environment = "longtable",
sanitize.colnames.function = function(x){x},
include.rownames = FALSE,
floating = FALSE)
```
Running Comparisons
========================================================
It may be useful to know the number of groups present (as above), but we can illuminate this information by testing out how frequently different types of groups appear in these areas.
```{r, echo=FALSE, eval=TRUE, include=FALSE}
# Part II - Calculate coincidence of other features
# Load in POI table
# I'm going to take some shortcuts here, preventing this code from being truly reproducible
# because the poi dataset is really huge - I've already downloaded and filtered to specific codes for features
# so code immediately below is untested. Will need to adjust below to the actual code I'm working with eventually.
## Skip ==>
# poi <- read.csv("data/poi.csv", header = FALSE, sep = "|")
# coordinates(poi) <- c("Feature Easting", "Feature Northing")
# proj4string(poi) <- proj4string(CRS(bng))
## transform CRS on churches (from BNG) to wgs84 for comparisons below
# poi.wgs <- spTransform(poi, CRS(wgs84))
## subsets
#poi.pubs <- poi[!is.na(poi[3] = "01020034")]
#poi.chequecashing <- poi[!is.na(poi[3] = "02090142")]
#poi.pawnbrokers <- poi[!is.na(poi[3] = "02090151")]
#poi.worship <- poi[!is.na(poi[3] = "06340459")]
# ==> to here for now
# Load in retail data from geolytics dataset
# from here: https://geolytix.co.uk/?retail_points
poi.grocery <- read.csv("data/retailpoints_version11_dec17.txt", sep = "\t")
# select useful columns
poi.grocery <- subset(poi.grocery, select = c("retailer", "store_name", "long_wgs", "lat_wgs"))
# convert to spdf
coordinates(poi.grocery) <- c("long_wgs", "lat_wgs")
proj4string(poi.grocery) <- CRS("+init=epsg:4326")
# filter out non-Scottish data
poi.grocery <- poi.grocery[!is.na(over(poi.grocery, geometry(admin.wgs))),]
# Load in British pubs from Ordnance survey dataset
poi.pubs <- read.csv("data/poi_pubs.csv", header = FALSE, sep = "|")
# select useful columns
poi.pubs <- subset(poi.pubs, select = c("V1", "V2", "V3", "V4", "V5"))
# rename columns to tidier names
colnames(poi.pubs) <- c("refnum", "name", "code", "x", "y")
coordinates(poi.pubs) <- c("x", "y")
proj4string(poi.pubs) <- CRS("+init=epsg:27700")
# transform CRS on pubs (from BNG) to wgs84 for comparisons below
poi.pubs.wgs <- spTransform(poi.pubs, CRS("+init=epsg:4326"))
# filter out non-Scottish pubs
poi.pubs.wgs <- poi.pubs.wgs[!is.na(over(poi.pubs.wgs, geometry(admin.wgs))),]
# Load in check cashing from Ordnance survey dataset
poi.checkcashing <- read.csv("data/poi_chequecashing.csv", header = FALSE, sep = "|")
# select useful columns
poi.checkcashing <- subset(poi.checkcashing, select = c("V1", "V2", "V3", "V4", "V5"))
# rename columns to tidier names
colnames(poi.checkcashing) <- c("refnum", "name", "code", "x", "y")
coordinates(poi.checkcashing) <- c("x", "y")
proj4string(poi.checkcashing) <- CRS("+init=epsg:27700")
# transform CRS on pubs (from BNG) to wgs84 for comparisons below
poi.checkcashing.wgs <- spTransform(poi.checkcashing, CRS("+init=epsg:4326"))
# filter out non-Scottish (hah!) check cashing shops
poi.checkcashing.wgs <- poi.checkcashing.wgs[!is.na(over(poi.checkcashing.wgs, geometry(admin.wgs))),]
# Load in pawnbrokers from Ordnance survey dataset
poi.pawnbrokers <- read.csv("data/poi_pawnbrokers.csv", header = FALSE, sep = "|")
# select useful columns
poi.pawnbrokers <- subset(poi.pawnbrokers, select = c("V1", "V2", "V3", "V4", "V5"))
# rename columns to tidier names
colnames(poi.pawnbrokers) <- c("refnum", "name", "code", "x", "y")
coordinates(poi.pawnbrokers) <- c("x", "y")
proj4string(poi.pawnbrokers) <- CRS("+init=epsg:27700")
# transform CRS on pawnbrokers (from BNG) to wgs84 for comparisons below
poi.pawnbrokers.wgs <- spTransform(poi.pawnbrokers, CRS("+init=epsg:4326"))
# filter out non-Scottish (hah!) pawnbrokers
poi.pawnbrokers.wgs <- poi.pawnbrokers.wgs[!is.na(over(poi.pawnbrokers.wgs, geometry(admin.wgs))),]
# Load in places of worship from Ordnance survey dataset
poi.pow <- read.csv("data/poi_pow.csv", header = FALSE, sep = "|")
# select useful columns
poi.pow <- subset(poi.pow, select = c("V1", "V2", "V3", "V4", "V5"))
# rename columns to tidier names
colnames(poi.pow) <- c("refnum", "name", "code", "x", "y")
coordinates(poi.pow) <- c("x", "y")
proj4string(poi.pow) <- CRS("+init=epsg:27700")
# transform CRS on pubs (from BNG) to wgs84 for comparisons below
poi.pow.wgs <- spTransform(poi.pow, CRS("+init=epsg:4326"))
# filter out non-Scottish (hah!) check cashing shops
poi.pow.wgs <- poi.pow.wgs[!is.na(over(poi.pow.wgs, geometry(admin.wgs))),]
# create WGS versions of SIMD subsets from above for comparisons below
simd.bottom15r.wgs <- spTransform(simd.bottom15r, CRS("+init=epsg:4326"))
simd.bottom10r.wgs <- spTransform(simd.bottom10r, CRS("+init=epsg:4326"))
simd.bottom5r.wgs <- spTransform(simd.bottom5r, CRS("+init=epsg:4326"))
# Test it out with a quick plot
# plot(poi.pubs.wgs)
# run further subsetting, as above, for specific bands of simd
grocery.simd.bottom15r.wgs <- poi.grocery[!is.na(over(poi.grocery, geometry(simd.bottom15r.wgs))),]
grocery.simd.bottom10r.wgs <- poi.grocery[!is.na(over(poi.grocery, geometry(simd.bottom10r.wgs))),]
grocery.simd.bottom5r.wgs <- poi.grocery[!is.na(over(poi.grocery, geometry(simd.bottom5r.wgs))),]
pubs.simd.bottom15r.wgs <- poi.pubs.wgs[!is.na(over(poi.pubs.wgs, geometry(simd.bottom15r.wgs))),]
pubs.simd.bottom10r.wgs <- poi.pubs.wgs[!is.na(over(poi.pubs.wgs, geometry(simd.bottom10r.wgs))),]
pubs.simd.bottom5r.wgs <- poi.pubs.wgs[!is.na(over(poi.pubs.wgs, geometry(simd.bottom5r.wgs))),]
pawnbrokers.simd.bottom15r.wgs <- poi.pawnbrokers.wgs[!is.na(over(poi.pawnbrokers.wgs, geometry(simd.bottom15r.wgs))),]
checkcashing.simd.bottom15r.wgs <- poi.checkcashing.wgs[!is.na(over(poi.checkcashing.wgs, geometry(simd.bottom15r.wgs))),]
pow.simd.bottom15r.wgs <- poi.pow.wgs[!is.na(over(poi.pow.wgs, geometry(simd.bottom15r.wgs))),]
# Part II.2 Run some calculations on presence for various types of entities
# Calculate total number of DTAS "community anchors" within bottom 15%
length(dtas.simd.bottom15r$rank) / length(dtas$name)
```
Pubs
========================================================
We can compare this frequency against some other features. The ordnance survey tells us that total pubs in Scotland are:
```{r echo=FALSE, eval=TRUE, include=TRUE}
length(poi.pubs.wgs$name)
```
Pubs
========================================================
The total numnber of Pubs located within these deprived areas noted above is:
```{r echo=FALSE, eval=TRUE, include=TRUE}
# Calculate percentage of total pubs in Scotland located within bottom 15% of IMD by rank
length(pubs.simd.bottom15r.wgs$name) / length(poi.pubs.wgs$name)
```
Churches
========================================================
To take another example, there are (according to the Ordnance Survey), the following number of places of worship in Scotland:
```{r echo=FALSE, eval=TRUE, include=TRUE}
length(poi.pow.wgs$name)
```
Of all these, our deprived areas have:
```{r echo=FALSE, eval=TRUE, include=TRUE}
# places of worship
length(pow.simd.bottom15r.wgs$name) / length(poi.pow.wgs$name)
```
Retail
========================================================
Another example we can look at is retail grocery stores. A geospatial company called GeoLytix publishes a complete set of British retailers on a regular basis. As of last November, they indicated that there were the following number of grocery stores in Scotland:
```{r echo=FALSE, eval=TRUE, include=TRUE}
length(poi.grocery$store_name)
```
Within our deprived areas, this represents
```{r echo=FALSE, eval=TRUE, include=TRUE}
# Calculate percentage of total retail grocers in Scotland
# located within bottom 15% of IMD by rank
length(grocery.simd.bottom15r.wgs$store_name) / length(poi.grocery$store_name)
# drill a bit deeper - morrisons stores
morrisons.scotland <- poi.grocery[poi.grocery$retailer == "Morrisons", ]
morrisons.bottom15r.scotland <- grocery.simd.bottom15r.wgs[grocery.simd.bottom15r.wgs$retailer == "Morrisons", ]
```
Retail, ctd.
========================================================
We can break this down by brand to get a more interesting indication. There are the following number of Morrison's brand stores in Scotland:
```{r echo=FALSE, eval=TRUE, include=TRUE}
length(morrisons.scotland)
```
Of these, the following percentage are located in deprived areas:
```{r echo=FALSE, eval=TRUE, include=TRUE}
length(morrisons.bottom15r.scotland$store_name) / length(morrisons.scotland)
# sainsburys
sainsburys.scotland <- poi.grocery[poi.grocery$retailer == "Sainsburys", ]
sainsburys.bottom15r.scotland <- grocery.simd.bottom15r.wgs[grocery.simd.bottom15r.wgs$retailer == "Sainsburys", ]
```
Retail, ctd.
========================================================
We find the predictable contrast by turning to Sainsburys. There are the following number of Sainsburys stores in Scotland:
```{r echo=FALSE, eval=TRUE, include=TRUE}
length(sainsburys.scotland)
```
Represented in our deprived areas are just:
```{r echo=FALSE, eval=TRUE, include=TRUE}
length(sainsburys.bottom15r.scotland$store_name) / length(sainsburys.scotland)
```
Retail, ctd.
========================================================
Sadly, the best bellweather of a deprived area in Scotland isn't any of the above, but rather pawnbrokers and check cashing stores. There are the following number of pawnbrokers:
```{r echo=FALSE, eval=TRUE, include=TRUE}
length(poi.pawnbrokers.wgs$name)
```
...and check cashing stores:
```{r echo=FALSE, eval=TRUE, include=TRUE}
length(poi.checkcashing.wgs$name)
```
Retail, ctd.
========================================================
Representation in our areas of of deprivation is, for check cashing establishments:
```{r echo=FALSE, eval=TRUE, include=TRUE}
length(checkcashing.simd.bottom15r.wgs$name) / length(poi.checkcashing.wgs$name)
```
and pawnbrokers:
```{r echo=FALSE, eval=TRUE, include=TRUE}
length(pawnbrokers.simd.bottom15r.wgs$name) / length(poi.pawnbrokers.wgs$name)
```
Pawnbrokers Mapped
========================================================
```{r echo=FALSE, eval=TRUE, include=TRUE}
plot(poi.checkcashing.wgs)
plot(checkcashing.simd.bottom15r.wgs, col="Red", add = TRUE)
plot(admin, border="grey", lwd=0.25, add = TRUE)
```
Targetting possile community anchors
========================================================
I've put together two different resources for DTAS to access this data:
- [On our Carto platform: a "slippy map""](https://carto.mapping.community/user/mapcomm-admin/builder/98dbb620-75d3-11e7-8dd5-005056372088/embed)
- A table of groups (forthcoming report!)
Discussion
========================================================
- What other kinds of data and analysis can you see being of value to you for strategic decision making?
- Possible demos:
- Common Ground Map
- Carto Platform
- QGIS
Bonus: Social Media Use
========================================================
- Research question: how do community groups use social media?