trs_admissions_survey2021/.Rhistory
2021-12-13 00:28:26 +00:00

513 lines
47 KiB
R
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

age_pie <- pie(table(TSR_data$Age), col=coul3)
TSR_data$MOST.RECENT.year.of.study <- factor(TSR_data$MOST.RECENT.year.of.study, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9), labels = c("Year 11/S4/Year 12(NI)", "Year 12/S5/Year 13(NI)", "Year 13/S6/Year 14(NI)", "I am currently on a gap year", "I am currently on an undergraduate/HE college course", "I am in full-time employment", "I am unemployed", "Other", "Prefer not to say"))
TSR_data$Age <- age_pie <- pie(table(factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say"))), col=coul3)
TSR_data$Age <- age_pie <- pie(table(factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say")), col=coul3)
pie(table(factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say"))), col=coul3)
pie(table(factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say"))), col=coul3))
age_pie <- pie(table(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say")), col=coul3)
age_pie <- pie(table(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say")), col=coul3))
TSR_data <- read.csv("./data/TSR data complete.csv")
TSR_data_summaries$Age <- factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say"))
TSR_data_summaries <- factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say"))
age_pie <- pie(table(TSR_data_summaries$Age), col=coul3)
age_pie <- pie(table(TSR_data_summaries), col=coul3)
# JK note: To keep things tidy, I've shifted the code here so that this isn't overwriting the dataset, but is instead operating off a separate df (same below)
TSR_data_summaries_age <- factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say"))
age_pie <- pie(table(TSR_data_summaries_age), col=coul3)
age_pie <- pie(table(TSR_data_summaries_age), col=coul3, cex = 0.8)
Ethnicity_bar <- ggplot(TSR_data, aes(Ethnicity)) + geom_bar() + coord_flip()
Ethnicity_bar
ggplot(TSR_data, aes(TSR_data_summaries_age)) + geom_bar()
# JK note: adding in a bar chart here, as according to the interwebs it's (apparently?) more accurate to visualise than bar charts
ggplot(TSR_data, aes(TSR_data_summaries_age)) + geom_bar() +coord_flip()
# JK note: adding in a bar chart here, as according to the interwebs it's (apparently?) more accurate to visualise than bar charts
ggplot(TSR_data, aes(TSR_data_summaries_age, fill=match)) + geom_bar() +coord_flip()
# JK note: adding in a bar chart here, as according to the interwebs it's (apparently?) more accurate to visualise than bar charts
ggplot(TSR_data, aes(TSR_data_summaries_age, fill=coul3)) + geom_bar() +coord_flip()
# JK note: adding in a bar chart here, as according to the interwebs it's (apparently?) more accurate to visualise than bar charts
ggplot(TSR_data, aes(TSR_data_summaries_age)) + geom_bar()
# JK note: adding in a bar chart here, as according to the interwebs it's (apparently?) more accurate to visualise than bar charts
ggplot(TSR_data, aes(TSR_data_summaries_age)) + geom_bar()
# save to png file for reports
ggsave("TSR_data_summaries_age.png")
# save to png file for reports
ggsave("figures/TSR_data_summaries_age.png")
# JK note: adding in a bar chart here, as according to the interwebs it's (apparently?) more accurate to visualise than bar charts
ggplot(TSR_data, aes(TSR_data_summaries_age)) + geom_bar() + title("Age of respondents")
# JK note: To keep things tidy, I've shifted the code here so that this isn't overwriting the dataset, but is instead operating off a separate df (same below)
TSR_data_summaries_age <- factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say"))
data_summaries_age labs(colour = "TSR_data_summaries_age")
data_summaries_age labs(title = "Respondent Age")
# JK note: adding in a bar chart here, as according to the interwebs it's (apparently?) more accurate to visualise than bar charts
data_summaries_age <- ggplot(TSR_data, aes(TSR_data_summaries_age)) + geom_bar() + title("Age of respondents")
# JK note: adding in a bar chart here, as according to the interwebs it's (apparently?) more accurate to visualise than bar charts
data_summaries_age <- ggplot(TSR_data, aes(TSR_data_summaries_age)) + geom_bar()
data_summaries_age labs(title = "Respondent Age")
data_summaries_age + labs(title = "Respondent Age")
data_summaries_age + labs(title = "Respondent Age Distribution", x = "Age")
data_summaries_age + labs(title = "Respondent Age Distribution", x = "Age", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_age.png")
TSR_data_summaries_most_recent_year_of_study <- factor(TSR_data$MOST.RECENT.year.of.study, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9), labels = c("Year 11/S4/Year 12(NI)", "Year 12/S5/Year 13(NI)", "Year 13/S6/Year 14(NI)", "I am currently on a gap year", "I am currently on an undergraduate/HE college course", "I am in full-time employment", "I am unemployed", "Other", "Prefer not to say"))
Year_study_pie <- pie(table(TSR_data_summaries_most_recent_year_of_study))
Year_study_pie <- pie(table(TSR_data_summaries_most_recent_year_of_study$MOST.RECENT.year.of.study))
TSR_data_summaries_most_recent_year_of_study <- factor(TSR_data$MOST.RECENT.year.of.study, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9), labels = c("Year 11/S4/Year 12(NI)", "Year 12/S5/Year 13(NI)", "Year 13/S6/Year 14(NI)", "I am currently on a gap year", "I am currently on an undergraduate/HE college course", "I am in full-time employment", "I am unemployed", "Other", "Prefer not to say"))
data_summaries_yos <- factor(TSR_data$MOST.RECENT.year.of.study, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9), labels = c("Year 11/S4/Year 12(NI)", "Year 12/S5/Year 13(NI)", "Year 13/S6/Year 14(NI)", "I am currently on a gap year", "I am currently on an undergraduate/HE college course", "I am in full-time employment", "I am unemployed", "Other", "Prefer not to say"))
Year_study_pie <- pie(table(data_summaries_yos$MOST.RECENT.year.of.study))
Year_study_pie <- pie(table(data_summaries_yos))
TSR_data <- read.csv("./data/TSR data complete.csv")
data_summaries_yos <- factor(TSR_data$MOST.RECENT.year.of.study, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9), labels = c("Year 11/S4/Year 12(NI)", "Year 12/S5/Year 13(NI)", "Year 13/S6/Year 14(NI)", "I am currently on a gap year", "I am currently on an undergraduate/HE college course", "I am in full-time employment", "I am unemployed", "Other", "Prefer not to say"))
Year_study_pie <- pie(table(data_summaries_yos))
pie(table(data_summaries_yos))
TSR_data_summaries_yos <- factor(TSR_data$MOST.RECENT.year.of.study, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9), labels = c("Year 11/S4/Year 12(NI)", "Year 12/S5/Year 13(NI)", "Year 13/S6/Year 14(NI)", "I am currently on a gap year", "I am currently on an undergraduate/HE college course", "I am in full-time employment", "I am unemployed", "Other", "Prefer not to say"))
data_summaries_yos <- ggplot(TSR_data, aes(TSR_data_summaries_yos)) + geom_bar()
data_summaries_yos + labs(title = "Respondent Most Recent Year of Study", x = "Age", y = "")
data_summaries_yos <- ggplot(TSR_data_summaries_yos, aes(TSR_data_summaries_yos)) + geom_bar()
TSR_data$MOST.RECENT.year.of.study <- factor(TSR_data$MOST.RECENT.year.of.study, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9), labels = c("Year 11/S4/Year 12(NI)", "Year 12/S5/Year 13(NI)", "Year 13/S6/Year 14(NI)", "I am currently on a gap year", "I am currently on an undergraduate/HE college course", "I am in full-time employment", "I am unemployed", "Other", "Prefer not to say"))
TSR_data <- read.csv("./data/TSR data complete.csv")
View(TSR_data)
View(TSR_data)
TSR_data_summaries_yos <- factor(TSR_data$MOSTRECENTyearofstudy, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9), labels = c("Year 11/S4/Year 12(NI)", "Year 12/S5/Year 13(NI)", "Year 13/S6/Year 14(NI)", "I am currently on a gap year", "I am currently on an undergraduate/HE college course", "I am in full-time employment", "I am unemployed", "Other", "Prefer not to say"))
data_summaries_yos <- ggplot(TSR_data_summaries_yos, aes(TSR_data_summaries_yos)) + geom_bar()
data_summaries_yos <- ggplot(TSR_data, aes(TSR_data_summaries_yos)) + geom_bar()
data_summaries_yos + labs(title = "Respondent Most Recent Year of Study", x = "Age", y = "")
data_summaries_yos + labs(title = "Respondent Most Recent Year of Study", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_age.png")
# save to png file for reports
ggsave("figures/TSR_data_summaries_yos.png")
# JK note: adding in a bar chart here, as according to the interwebs it's (apparently?) more accurate to visualise than bar charts
data_summaries_age <- ggplot(TSR_data, aes(TSR_data_summaries_age)) + geom_bar()
data_summaries_age + labs(title = "Respondent Age Distribution", x = "Age", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_age.png")
TSR_data_summaries_gender <- factor(TSR_data$Gender, levels = c(1, 2, 3, 4), labels = c("Male", "Female", "I identify my gender in another way", "Prefer not to say"))
data_summaries_gender + labs(title = "Respondent gender self-identification", x = "", y = "")
TSR_data_summaries_gender <- factor(TSR_data$Gender, levels = c(1, 2, 3, 4), labels = c("Male", "Female", "I identify my gender in another way", "Prefer not to say"))
data_summaries_gender <- ggplot(TSR_data, aes(TSR_data_summaries_gender)) + geom_bar()
data_summaries_gender + labs(title = "Respondent gender self-identification", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_gender.png")
install.packages("stringr") # Install stringr package, used for wrapping label text in plots
install.packages("stringr")
library("stringr") # Load stringr
data_summaries_gender + labs(title = "Respondent gender self-identification", x = "", y = "") + str_wrap(x, width = 10))
data_summaries_gender + labs(title = "Respondent gender self-identification", x = "", y = "") str_wrap(x, width = 10))
data_summaries_gender + labs(title = "Respondent gender self-identification", x = "", y = "") + str_wrap(x, width = 10)
data_summaries_gender <- ggplot(TSR_data, aes(TSR_data_summaries_gender)) + geom_bar()
library(ggplot2)
library(devtools)
library(devtools)
library(usethis)
library(devtools)
library(likert)
# Load RColorBrewer
# install.packages("RColorBrewer")
library(RColorBrewer)
install.packages("stringr") # Install stringr package, used for wrapping label text in plots
library("stringr") # Load stringr package, used for wrapping label text in plots
# Define colour palettes for plots below
coul3 <- brewer.pal(3, "RdYlBu") # Using RdYlBu range to generate 3 colour palette: https://colorbrewer2.org/#type=diverging&scheme=RdYlBu&n=5
TSR_data <- read.csv("./data/TSR data complete.csv")
subject_data <- read.csv("./data/Subject data.csv")
knitr::opts_chunk$set(echo = TRUE)
library(ggplot2)
library(devtools)
library(usethis)
library(devtools)
library(likert)
# Load RColorBrewer
# install.packages("RColorBrewer")
library(RColorBrewer)
library("stringr") # Load stringr package, used for wrapping label text in plots
# Define colour palettes for plots below
coul3 <- brewer.pal(3, "RdYlBu") # Using RdYlBu range to generate 3 colour palette: https://colorbrewer2.org/#type=diverging&scheme=RdYlBu&n=5
TSR_data <- read.csv("./data/TSR data complete.csv")
subject_data <- read.csv("./data/Subject data.csv")
# JK note: To keep things tidy, I've shifted the code here so that this isn't overwriting the dataset, but is instead operating off a separate df (same below)
TSR_data_summaries_age <- factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say"))
# JK note: adding in a bar chart here, as according to the interwebs it's (apparently?) more accurate to visualise than bar charts
data_summaries_age <- ggplot(TSR_data, aes(TSR_data_summaries_age)) + geom_bar()
data_summaries_age + labs(title = "Respondent Age Distribution", x = "Age", y = "")
TSR_data_summaries_yos <- factor(TSR_data$MOSTRECENTyearofstudy, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9), labels = c("Year 11/S4/Year 12(NI)", "Year 12/S5/Year 13(NI)", "Year 13/S6/Year 14(NI)", "I am currently on a gap year", "I am currently on an undergraduate/HE college course", "I am in full-time employment", "I am unemployed", "Other", "Prefer not to say"))
data_summaries_yos <- ggplot(TSR_data, aes(TSR_data_summaries_yos)) + geom_bar()
data_summaries_yos + labs(title = "Respondent Most Recent Year of Study", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_yos.png")
TSR_data_summaries_gender <- factor(TSR_data$Gender, levels = c(1, 2, 3, 4), labels = c("Male", "Female", "I identify my gender in another way", "Prefer not to say"))
data_summaries_gender <- ggplot(TSR_data, aes(TSR_data_summaries_gender)) + geom_bar()
data_summaries_gender + labs(title = "Respondent gender self-identification", x = "", y = "") + str_wrap(x, width = 10)
TSR_data_summaries_gender <- str_wrap(TSR_data_summaries_gender, width = 10)
data_summaries_gender <- ggplot(TSR_data, aes(TSR_data_summaries_gender)) + geom_bar()
data_summaries_gender + labs(title = "Respondent gender self-identification", x = "", y = "") + str_wrap(x, width = 10)
data_summaries_gender + labs(title = "Respondent gender self-identification", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_gender.png")
TSR_data_summaries_ethnicity$ethnicity <- factor(TSR_data$Ethnicity, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ,18, 19), labels = c("Arab", "Asian/Asian British - Indian", "Asian/Asian British - Pakistani", "Asian/Asian British - Bangladeshi", "Asian/Asian British - Chinese", "Asian/Asian British - Any other Asian background", "Black/Black British - African", "Black/Black British - Caribbean", "Black/Black British - Any other Black background", "Mixed/Multiple Ethnic Groups - White and Black Caribbean", "Mixed/Multiple Ethnic Groups - White and Black African", "Mixed/Multiple Ethnic Groups - White and Black Asian", "Mixed/Multiple Ethnic Groups - Any other Mixed/Multiple Ethnic background", "White - English/Welsh/Scottish/Northern Irish/British", "White - Irish", "White - Gypsy or Irish Traveller", "White - Any other White background", "Other Ethnic group, please describe", "Prefer not to say"))
TSR_data_summaries_ethnicity <- factor(TSR_data$Ethnicity, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ,18, 19), labels = c("Arab", "Asian/Asian British - Indian", "Asian/Asian British - Pakistani", "Asian/Asian British - Bangladeshi", "Asian/Asian British - Chinese", "Asian/Asian British - Any other Asian background", "Black/Black British - African", "Black/Black British - Caribbean", "Black/Black British - Any other Black background", "Mixed/Multiple Ethnic Groups - White and Black Caribbean", "Mixed/Multiple Ethnic Groups - White and Black African", "Mixed/Multiple Ethnic Groups - White and Black Asian", "Mixed/Multiple Ethnic Groups - Any other Mixed/Multiple Ethnic background", "White - English/Welsh/Scottish/Northern Irish/British", "White - Irish", "White - Gypsy or Irish Traveller", "White - Any other White background", "Other Ethnic group, please describe", "Prefer not to say"))
Ethnicity_bar <- ggplot(TSR_data, aes(Ethnicity)) + geom_bar() + coord_flip()
Ethnicity_bar <- ggplot(TSR_data, aes(TSR_data_summaries_ethnicity)) + geom_bar() + coord_flip()
Ethnicity_bar
data_summaries_ethnicity <- ggplot(TSR_data, aes(TSR_data_summaries_ethnicity)) + geom_bar() + coord_flip()
data_summaries_ethnicity
TSR_data_summaries_ethnicity <- str_wrap(TSR_data_summaries_ethnicity, width = 20)
data_summaries_ethnicity <- ggplot(TSR_data, aes(TSR_data_summaries_ethnicity)) + geom_bar() + coord_flip()
data_summaries_ethnicity
data_summaries_ethnicity <- ggplot(TSR_data, aes(TSR_data_summaries_ethnicity)) + geom_bar() + coord_flip() + xlab(NULL) + ylab(yaxis_label)
data_summaries_ethnicity <- ggplot(TSR_data, aes(TSR_data_summaries_ethnicity)) + geom_bar() + coord_flip() + xlab(NULL)
data_summaries_ethnicity
# save to png file for reports
ggsave("figures/TSR_data_summaries_ethnicity.png")
data_summaries_ethnicity <- ggplot(TSR_data, aes(TSR_data_summaries_ethnicity)) + geom_col()) + coord_flip() + xlab(NULL)
data_summaries_ethnicity <- ggplot(TSR_data, aes(TSR_data_summaries_ethnicity)) + geom_col() + coord_flip() + xlab(NULL)
data_summaries_ethnicity
data_summaries_ethnicity <- ggplot(TSR_data, aes(TSR_data_summaries_ethnicity)) + geom_bar() + scale_x_discrete(labels = wrap) + xlab(NULL) + coord_flip()
data_summaries_ethnicity <- ggplot(TSR_data, aes(TSR_data_summaries_ethnicity)) + geom_bar() + xlab(NULL) + coord_flip()
data_summaries_ethnicity
TSR_data_summaries_ethnicity <- str_wrap(TSR_data_summaries_ethnicity, width = 30)
data_summaries_ethnicity <- ggplot(TSR_data, aes(TSR_data_summaries_ethnicity)) + geom_bar() + xlab(NULL) + coord_flip()
data_summaries_ethnicity
TSR_data_summaries_ethnicity <- factor(TSR_data$Ethnicity, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ,18, 19), labels = c("Arab", "Indian", "Pakistani", "Bangladeshi", "Chinese", "Any other Asian background", "African", "Caribbean", "Any other Black background", "White and Black Caribbean", "White and Black African", "White and Black Asian", "Any other Mixed/Multiple Ethnic background", "White - British", "White - Irish", "Gypsy or Irish Traveller", "Any other White background", "Other Ethnic group", "Prefer not to say"))
TSR_data_summaries_ethnicity <- str_wrap(TSR_data_summaries_ethnicity, width = 30)
data_summaries_ethnicity <- ggplot(TSR_data, aes(TSR_data_summaries_ethnicity)) + geom_bar() + xlab(NULL) + coord_flip()
data_summaries_ethnicity
TSR_data_summaries_ethnicity <- factor(TSR_data$Ethnicity, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ,18, 19), labels = c("Arab", "Indian", "Pakistani", "Bangladeshi", "Chinese", "Any other Asian background", "Black - African", "Black - Caribbean", "Any other Black background", "Mixed - White and Black Caribbean", "Mixed - White and Black African", "Mixed - White and Black Asian", "Any other Mixed/Multiple Ethnic background", "White - British", "White - Irish", "Gypsy or Irish Traveller", "Any other White background", "Other Ethnic group", "Prefer not to say"))
TSR_data_summaries_ethnicity <- str_wrap(TSR_data_summaries_ethnicity, width = 30)
data_summaries_ethnicity <- ggplot(TSR_data, aes(TSR_data_summaries_ethnicity)) + geom_bar() + xlab(NULL) + coord_flip()
data_summaries_ethnicity
# save to png file for reports
ggsave("figures/TSR_data_summaries_ethnicity.png")
TSR_data_summaries_religion <- factor(TSR_data$Religious.Affliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other"))
Religious_affiliation_bar <- ggplot(TSR_data, aes(Religious.Affliation)) + geom_bar() + coord_flip()
Religious_affiliation_bar
Religious_affiliation_bar <- ggplot(TSR_data, aes(TSR_data_summaries_religion)) + geom_bar() + coord_flip()
Religious_affiliation_bar
TSR_data_summaries_religion <- factor(TSR_data$Religious.Affliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other"))
Religious_affiliation_bar <- ggplot(TSR_data, aes(TSR_data_summaries_religion)) + geom_bar() + coord_flip()
Religious_affiliation_bar
Religious_affiliation_bar <- ggplot(TSR_data_summaries_religion, aes(TSR_data_summaries_religion)) + geom_bar() + coord_flip()
Religious_affiliation_bar
View(Religious_affiliation_bar)
TSR_data_summaries_religion <- factor(TSR_data$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other"))
Religious_affiliation_bar <- ggplot(TSR_data, aes(Religious.Affliation)) + geom_bar() + coord_flip()
Religious_affiliation_bar
Religious_affiliation_bar <- ggplot(TSR_data, aes(TSR_data_summaries_religion)) + geom_bar() + coord_flip()
Religious_affiliation_bar
data_summaries_ethnicity + labs(title = "Respondent ethnic self-identification", x = "", y = "")
data_summaries_ethnicity
# save to png file for reports
ggsave("figures/TSR_data_summaries_ethnicity.png")
TSR_data_summaries_ethnicity <- str_wrap(TSR_data_summaries_ethnicity, width = 30)
data_summaries_ethnicity <- ggplot(TSR_data, aes(TSR_data_summaries_ethnicity)) + geom_bar() + xlab(NULL) + coord_flip()
data_summaries_ethnicity + labs(title = "Respondent ethnic self-identification", x = "", y = "")
data_summaries_ethnicity
# save to png file for reports
ggsave("figures/TSR_data_summaries_ethnicity.png")
data_summaries_ethnicity + labs(title = "Respondent ethnic self-identification", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_ethnicity.png")
Religious_affiliation_bar <- ggplot(TSR_data, aes(TSR_data_summaries_religion)) + geom_bar() + coord_flip()
Religious_affiliation_bar + labs(title = "Respondent religious self-identification", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_religion.png")
#Q5 Subject Knowledge/Understanding
subject_data$Subject <- factor(subject_data$Subject, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), labels = c("Philosophy", "Sociology", "Psychology", "History", "Ethics", "Theology", "Religious Studies", "Politics", "English", "Math", "Computer Science", "Business"))
understanding_mean <- aggregate(Understanding ~ Subject, data = subject_data, mean)
understanding_bar <- ggplot(understanding_mean, aes(x = Subject, y = Understanding)) + stat_summary(fun = "mean", geom = "bar") + coord_flip()
understanding_bar
understanding_bar + labs(title = "I have a good understanding of what this subject involves?", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_subject_understanding.png")
understanding_mean <- aggregate(Understanding ~ Subject, data = subject_data, mean)
understanding_bar <- ggplot(understanding_mean, aes(x = Subject, y = Understanding)) + stat_summary(fun = "mean", geom = "bar") + coord_flip()
understanding_bar + labs(title = "I have a good understanding of what this subject involves?", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_subject_understanding.png")
#Q6 Subject Interest
interest_mean <- aggregate(Interest ~ Subject, data = subject_data, mean)
interest_bar <- ggplot(interest_mean, aes(x = Subject, y = Interest)) + stat_summary(fun = "mean", geom = "bar") + coord_flip()
interest_bar + labs(title = "I would be interested in studying this subject at University?", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_subject_interest.png")
employability_mean <- aggregate(Employability ~ Subject, data = subject_data, mean)
employability_bar <- ggplot(employability_mean, aes(x = Subject, y = Employability)) + stat_summary(fun = "mean", geom = "bar") + coord_flip()
employability_bar + labs(title = "please rate from 1 to 5 where 1 represents 'Good employability prospects and 5 represents Poor employability prospects'", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_subject_employability.png")
employability_bar + labs(title = "please rate ... employability prospects", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_subject_employability.png")
#likert_test <- likert(subject_data)
Understanding_data <- TSR_data[, 6:17]
likert_test_understand <- likert(Understanding_data)
#likert_test <- likert(subject_data)
likert(TSR_data[, 6:17])
#likert_test <- likert(subject_data)
likert(TSR_data[, 6])
#likert_test <- likert(subject_data)
likert(items=TSR_data[, 6], drop=FALSE)
#likert_test <- likert(subject_data)
likert(items=TSR_data[, 6])
#likert_test <- likert(subject_data)
Understanding_data <- TSR_data[, 6:17]
View(Understanding_data)
likert_test_understand <- likert(Understanding_data$GoodunderstandingofTheology)
likert_test_understand <- likert(Understanding_data)
understanding_data <- TSR_data[, 6]
understanding_data <- TSR_data[, 6]
l24g <- likert(understanding_data)
TSR_data <- read.csv("./data/TSR data complete.csv")
understanding_data <- TSR_data[, 6]
likert_test_understand <- likert(understanding_data)
as.data.frame(TSR_data)
#likert_test <- likert(subject_data)
understanding_data <- as.data.frame(TSR_data)
View(understanding_mean)
View(understanding_mean)
View(understanding_data)
View(understanding_data)
likert_test_understand <- likert(understanding_data)
keysubjects_data <- subject_data[subject_data$Subject == "Philosophy" | subject_data$Subject == "Ethics" | subject_data$Subject == "Theology" | subject_data$Subject == "Religious Studies", ]
recode_interest <- ifelse(3 <= keysubjects_data$Interest & keysubjects_data$Interest >=5, "Positive", "Negative")
keysubjects_data <- cbind(keysubjects_data, recode_interest)
keysubjects_data$recode_interest <- factor(keysubjects_data$recode_interest)
table(keysubjects_data$recode_interest, keysubjects_data$Subject)
View(keysubjects_data)
recode_interest <- ifelse(2 <= keysubjects_data$Interest & keysubjects_data$Interest >=4, "Positive", "Negative")
keysubjects_data <- cbind(keysubjects_data, recode_interest)
keysubjects_data$recode_interest <- factor(keysubjects_data$recode_interest)
table(keysubjects_data$recode_interest, keysubjects_data$Subject)
View(keysubjects_data)
keysubjects_data <- subject_data[subject_data$Subject == "Philosophy" | subject_data$Subject == "Ethics" | subject_data$Subject == "Theology" | subject_data$Subject == "Religious Studies", ]
recode_interest <- ifelse(2 <= keysubjects_data$Interest & keysubjects_data$Interest >=4, "Positive", "Negative")
keysubjects_data <- cbind(keysubjects_data, recode_interest)
keysubjects_data$recode_interest <- factor(keysubjects_data$recode_interest)
table(keysubjects_data$recode_interest, keysubjects_data$Subject)
write.csv(table(keysubjects_data$recode_interest, keysubjects_data$Subject), "derivedData/interest_table.csv", row.names=TRUE)
interest_table <- table(keysubjects_data$recode_interest, keysubjects_data$Subject)
write.csv(interest_table, "derivedData/interest_table.csv", row.names=TRUE)
derivedData
write.csv(interest_table, "derivedData/interest_table.csv", row.names=TRUE)
# Set up local workspace:
if (dir.exists("data") == FALSE) {
dir.create("data")
}
if (dir.exists("figures") == FALSE) {
dir.create("figures")
}
if (dir.exists("derivedData") == FALSE) {
dir.create("derivedData")
}
# export table to csv
write.csv(interest_table, "derivedData/interest_table.csv", row.names=TRUE)
### Philosophy ###
Philos_subset_Low <- TSR_data[TSR_data$GoodunderstandingofPhilosophy < 3 & TSR_data$GoodunderstandingofPhilosophy != 0, ]
Philos_subset_High <- TSR_data[TSR_data$GoodunderstandingofPhilosophy > 3, ]
# Low interest cohort
Philos_subset_Low <- TSR_data[TSR_data$GoodunderstandingofPhilosophy < 3 & TSR_data$GoodunderstandingofPhilosophy != 0, ]
# High interest cohort
Philos_subset_High <- TSR_data[TSR_data$GoodunderstandingofPhilosophy > 3, ]
# Low understanding of philosophy cohort
Philos_subset_Low <- TSR_data[TSR_data$GoodunderstandingofPhilosophy < 3 & TSR_data$GoodunderstandingofPhilosophy != 0, ]
# High understanding of philosophy cohort
Philos_subset_High <- TSR_data[TSR_data$GoodunderstandingofPhilosophy > 3, ]
subject_data$Subject
keysubjects_data <- subject_data[subject_data$Subject == "Philosophy" | subject_data$Subject == "Ethics" | subject_data$Subject == "Theology" | subject_data$Subject == "Religious Studies" | subject_data$Subject == "Sociology", ]
recode_interest <- ifelse(2 <= keysubjects_data$Interest & keysubjects_data$Interest >=4, "Positive", "Negative")
keysubjects_data <- cbind(keysubjects_data, recode_interest)
keysubjects_data$recode_interest <- factor(keysubjects_data$recode_interest)
interest_table <- table(keysubjects_data$recode_interest, keysubjects_data$Subject)
# export table to csv
write.csv(interest_table, "derivedData/interest_table.csv", row.names=TRUE)
keysubjects_data <- subject_data[subject_data$Subject == "Philosophy" | subject_data$Subject == "Ethics" | subject_data$Subject == "Theology" | subject_data$Subject == "Religious Studies" | subject_data$Subject == "Sociology" | subject_data$Subject == "Psychology" | subject_data$Subject == "History" | subject_data$Subject == "Politics" | subject_data$Subject == "English" | subject_data$Subject == "Math" | subject_data$Subject == "Computer Science" | subject_data$Subject == "Business", ]
recode_interest <- ifelse(2 <= keysubjects_data$Interest & keysubjects_data$Interest >=4, "Positive", "Negative")
keysubjects_data <- cbind(keysubjects_data, recode_interest)
keysubjects_data$recode_interest <- factor(keysubjects_data$recode_interest)
interest_table <- table(keysubjects_data$recode_interest, keysubjects_data$Subject)
# export table to csv
write.csv(interest_table, "derivedData/interest_table.csv", row.names=TRUE)
keysubjects_data$Interest
prop.table(keysubjects_data$Interest)
keysubjects_data
View(subject_data)
TSR_data_theology_positive <- TSR_data$InterestedinstudyingTheology >=4
TSR_data_theology_positive
TSR_data_theology_positive <- TSR_data$InterestedinstudyingTheology[] >=4
library(dplyr)
TSR_data_theology_positive %>% filter(TSR_data, InterestedinstudyingTheology >= 4)
TSR_data$InterestedinstudyingTheology
TSR_data$InterestedinstudyingTheology >4
TSR_data$InterestedinstudyingTheology >3
count(TSR_data$InterestedinstudyingTheology >3)
length(TSR_data$InterestedinstudyingTheology >3)
# TSR_data_theology_positive %>%
filter(TSR_data, InterestedinstudyingTheology >= 4)
length(TSR_data$InterestedinstudyingTheology >3)
# TSR_data_theology_positive %>%
filter(TSR_data, InterestedinstudyingTheology >= 4)
filter(TSR_data, InterestedinstudyingTheology == 4)
filter(TSR_data, InterestedinstudyingTheology >= 4)
TSR_data_theology_positive %>% filter(TSR_data, InterestedinstudyingTheology >= 4)
TSR_data_theology_positive <- filter(TSR_data, InterestedinstudyingTheology >= 4)
View(TSR_data_theology_positive)
TSR_data_theology_positive <- filter(TSR_data, InterestedinstudyingTheology < 3)
TSR_data_theology_positive <- filter(TSR_data, InterestedinstudyingTheology < 3)
TSR_data_theology_positive <- filter(TSR_data, InterestedinstudyingTheology > 3)
TSR_data_theology_positive <- filter(TSR_data, InterestedinstudyingTheology > 2)
TSR_data_theology_positive <- filter(TSR_data, InterestedinstudyingTheology > 2)
TSR_data_theology_positive <- filter(TSR_data, InterestedinstudyingTheology < 3)
TSR_data_theology_positive <- filter(TSR_data, InterestedinstudyingTheology < 2)
TSR_data_theology_positive <- filter(TSR_data, InterestedinstudyingTheology < 1)
TSR_data_theology_positive <- filter(TSR_data, InterestedinstudyingTheology >= 4)
TSR_data_theology_negative <- filter(TSR_data, InterestedinstudyingTheology <= 2)
TSR_data_theology_positive <- filter(TSR_data, InterestedinstudyingTheology >= 4 & InterestedinstudyingTheology != 0)
TSR_data_theology_negative <- filter(TSR_data, InterestedinstudyingTheology <= 2 & InterestedinstudyingTheology != 0)
TSR_data_rs_positive <- filter(TSR_data, InterestedinstudyingReligion >= 4 & InterestedinstudyingReligion != 0)
TSR_data_rs_positive <- filter(TSR_data, InterestedinstudyingReligiousStudies >= 4 & InterestedinstudyingReligiousStudies != 0)
TSR_data_rs_negative <- filter(TSR_data, InterestedinstudyingReligiousStudies <= 2 & InterestedinstudyingReligiousStudies != 0)
knitr::opts_chunk$set(echo = TRUE)
library(ggplot2)
library(devtools)
library(usethis)
library(devtools)
library(likert)
# Load RColorBrewer
# install.packages("RColorBrewer")
library(RColorBrewer)
library("stringr") # Load stringr package, used for wrapping label text in plots
library(dplyr) # Used for filtering below
# Define colour palettes for plots below
coul3 <- brewer.pal(3, "RdYlBu") # Using RdYlBu range to generate 3 colour palette: https://colorbrewer2.org/#type=diverging&scheme=RdYlBu&n=5
TSR_data <- read.csv("./data/TSR data complete.csv")
subject_data <- read.csv("./data/Subject data.csv")
# Set up local workspace:
if (dir.exists("data") == FALSE) {
dir.create("data")
}
if (dir.exists("figures") == FALSE) {
dir.create("figures")
}
if (dir.exists("derivedData") == FALSE) {
dir.create("derivedData")
}
TSR_data_theology_positive_summaries_religion <- factor(TSR_data_theology_positive$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other"))
TSR_data_theology_positive_summaries_religion <- factor(TSR_data_theology_positive$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other"))
TSR_data_theology_negative_summaries_religion <- factor(TSR_data_theology_negative$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other"))
TSR_data_rs_positive_summaries_religion <- factor(TSR_data_rs_positive$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other"))
TSR_data_rs_positive_summaries_religion <- factor(TSR_data_rs_negative$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other"))
Religious_affiliation_bar2 <- ggplot(TSR_data, aes(TSR_data_theology_positive_summaries_religion)) + geom_bar() + coord_flip()
Religious_affiliation_bar2 + labs(title = "Respondent religious self-identification", x = "", y = "")
Religious_affiliation_bar2 <- ggplot(TSR_data_theology_positive, aes(TSR_data_theology_positive_summaries_religion)) + geom_bar() + coord_flip()
Religious_affiliation_bar2 + labs(title = "Respondent religious self-identification", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_religion_theologypositive.png")
TSR_data_rs_positive_summaries_religion <- factor(TSR_data_rs_positive$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other"))
TSR_data_rs_negative_summaries_religion <- factor(TSR_data_rs_negative$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other"))
Religious_affiliation_bar3 <- ggplot(TSR_data_rs_positive, aes(TSR_data_rs_positive_summaries_religion)) + geom_bar() + coord_flip()
Religious_affiliation_bar3 + labs(title = "Respondent religious self-identification", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_religion_theologypositive.png")
Religious_affiliation_bar2 <- ggplot(TSR_data_theology_positive, aes(TSR_data_theology_positive_summaries_religion)) + geom_bar() + coord_flip()
Religious_affiliation_bar2 + labs(title = "Respondent religious self-identification (positive sentiment towards "theology")", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_religion_theologypositive.png")
Religious_affiliation_bar2 + labs(title = "Respondent religious self-identification - positive sentiment towards theology"), x = "", y = "")
"
Religious_affiliation_bar2 + labs(title = "Respondent religious self-identification - positive sentiment towards theology", x = "", y = "")
Religious_affiliation_bar2 + labs(title = "Respondent religious self-identification, positive sentiment towards theology", x = "", y = "")
Religious_affiliation_bar2 <- ggplot(TSR_data_theology_positive, aes(TSR_data_theology_positive_summaries_religion)) + geom_bar() + coord_flip()
Religious_affiliation_bar2 + labs(title = "Respondent religious self-identification, positive sentiment towards theology", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_religion_theologypositive.png")
Religious_affiliation_bar3 <- ggplot(TSR_data_rs_positive, aes(TSR_data_rs_positive_summaries_religion)) + geom_bar() + coord_flip()
Religious_affiliation_bar3 + labs(title = "Respondent religious self-identification, positive sentiment towards rs", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_religion_rspositive.png")
library(scales) # Used for adding percentages to bar charts
Religious_affiliation_bar3 <- ggplot(TSR_data_rs_positive, aes(TSR_data_rs_positive_summaries_religion, label=scales::percent(pct))) + geom_bar() + coord_flip()
Religious_affiliation_bar3 + labs(title = "Respondent religious self-identification, positive sentiment towards rs", x = "", y = "")
Religious_affiliation_bar3 <- ggplot(TSR_data_rs_positive, aes(TSR_data_rs_positive_summaries_religion) + geom_bar() + geom_text(label=scales::percent(pct))) + coord_flip()
knitr::opts_chunk$set(echo = TRUE)
library(ggplot2)
library(devtools)
library(usethis)
library(devtools)
library(likert)
# Load RColorBrewer
# install.packages("RColorBrewer")
library(RColorBrewer)
library("stringr") # Load stringr package, used for wrapping label text in plots
library(dplyr) # Used for filtering below
library(scales) # Used for adding percentages to bar charts
# Define colour palettes for plots below
coul3 <- brewer.pal(3, "RdYlBu") # Using RdYlBu range to generate 3 colour palette: https://colorbrewer2.org/#type=diverging&scheme=RdYlBu&n=5
TSR_data <- read.csv("./data/TSR data complete.csv")
subject_data <- read.csv("./data/Subject data.csv")
# Set up local workspace (as needed):
if (dir.exists("data") == FALSE) {
dir.create("data")
}
if (dir.exists("figures") == FALSE) {
dir.create("figures")
}
if (dir.exists("derivedData") == FALSE) {
dir.create("derivedData")
}
# Set up local workspace, as needed:
if (dir.exists("data") == FALSE) {
dir.create("data")
}
if (dir.exists("figures") == FALSE) {
dir.create("figures")
}
if (dir.exists("derivedData") == FALSE) {
dir.create("derivedData")
}
TSR_data_theology_positive_summaries_ethnicity <- factor(TSR_data_theology_positive$Ethnicity, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ,18, 19), labels = c("Arab", "Indian", "Pakistani", "Bangladeshi", "Chinese", "Any other Asian background", "Black - African", "Black - Caribbean", "Any other Black background", "Mixed - White and Black Caribbean", "Mixed - White and Black African", "Mixed - White and Black Asian", "Any other Mixed/Multiple Ethnic background", "White - British", "White - Irish", "Gypsy or Irish Traveller", "Any other White background", "Other Ethnic group", "Prefer not to say"))
TSR_data_theology_positive_summaries_ethnicity <- str_wrap(TSR_data_summaries_ethnicity, width = 30)
TSR_data_rs_positive_summaries_ethnicity <- factor(TSR_data_rs_positive$Ethnicity, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ,18, 19), labels = c("Arab", "Indian", "Pakistani", "Bangladeshi", "Chinese", "Any other Asian background", "Black - African", "Black - Caribbean", "Any other Black background", "Mixed - White and Black Caribbean", "Mixed - White and Black African", "Mixed - White and Black Asian", "Any other Mixed/Multiple Ethnic background", "White - British", "White - Irish", "Gypsy or Irish Traveller", "Any other White background", "Other Ethnic group", "Prefer not to say"))
TSR_data_rs_positive_summaries_ethnicity <- str_wrap(TSR_data_summaries_ethnicity, width = 30)
TSR_data__theology_positive_summaries_gender <- factor(TSR_data_theology_positive$Gender, levels = c(1, 2, 3, 4), labels = c("Male", "Female", "I identify my gender in another way", "Prefer not to say"))
# JK note: using stringr here to wrap axis titles
TSR_data__theology_positive_summaries_gender <- str_wrap(TSR_data__theology_positive_summaries_gender, width = 10)
TSR_data_rs_positive_summaries_gender <- factor(TSR_data_rs_positive$Gender, levels = c(1, 2, 3, 4), labels = c("Male", "Female", "I identify my gender in another way", "Prefer not to say"))
# JK note: using stringr here to wrap axis titles
TSR_data_rs_positive_summaries_gender <- str_wrap(TSR_data_rs_positive_summaries_gender, width = 10)
gender_bar2 <- ggplot(TSR_data_theology_positive, aes(TSR_data__theology_positive_summaries_gender)) + geom_bar()
gender_bar2 + labs(title = "Respondent gender self-identification, theology positive", x = "", y = "")
gender_bar2 + labs(title = "Respondent gender self-identification, theology positive", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_gender2.png")
gender_bar3 <- ggplot(TSR_data_rs_positive, aes(TSR_data_rs_positive_summaries_gender)) + geom_bar()
gender_bar3 + labs(title = "Respondent gender self-identification, rs positive", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_gender3.png")
data_summaries_theology_positive_ethnicity <- ggplot(TSR_data_theology_positive, aes(TSR_data_theology_positive_summaries_ethnicity)) + geom_bar() + xlab(NULL) + coord_flip()
data_summaries_theology_positive_ethnicity + labs(title = "Respondent ethnic self-identification, theology positive", x = "", y = "")
data_summaries_theology_positive_ethnicity + labs(title = "Respondent ethnic self-identification, theology positive", x = "", y = "")
data_summaries_theology_positive_ethnicity <- ggplot(TSR_data_theology_positive, aes(TSR_data_theology_positive_summaries_ethnicity)) + geom_bar() + xlab(NULL) + coord_flip()
data_summaries_theology_positive_ethnicity + labs(title = "Respondent ethnic self-identification, theology positive", x = "", y = "")
data_summaries_theology_positive_ethnicity + labs(title = "Respondent ethnic self-identification", x = "", y = "")
TSR_data_rs_negative_summaries_religion <- factor(TSR_data_rs_negative$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other"))
TSR_data_theology_positive_summaries_ethnicity <- factor(TSR_data_theology_positive$Ethnicity, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ,18, 19), labels = c("Arab", "Indian", "Pakistani", "Bangladeshi", "Chinese", "Any other Asian background", "Black - African", "Black - Caribbean", "Any other Black background", "Mixed - White and Black Caribbean", "Mixed - White and Black African", "Mixed - White and Black Asian", "Any other Mixed/Multiple Ethnic background", "White - British", "White - Irish", "Gypsy or Irish Traveller", "Any other White background", "Other Ethnic group", "Prefer not to say"))
TSR_data_theology_positive_summaries_ethnicity <- str_wrap(TSR_data_theology_positive_summaries_ethnicity, width = 30)
TSR_data_rs_positive_summaries_ethnicity <- factor(TSR_data_rs_positive$Ethnicity, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ,18, 19), labels = c("Arab", "Indian", "Pakistani", "Bangladeshi", "Chinese", "Any other Asian background", "Black - African", "Black - Caribbean", "Any other Black background", "Mixed - White and Black Caribbean", "Mixed - White and Black African", "Mixed - White and Black Asian", "Any other Mixed/Multiple Ethnic background", "White - British", "White - Irish", "Gypsy or Irish Traveller", "Any other White background", "Other Ethnic group", "Prefer not to say"))
TSR_data_rs_positive_summaries_ethnicity <- str_wrap(TSR_data_rs_positive_summaries_ethnicity, width = 30)
TSR_data_rs_positive_summaries_ethnicity <- str_wrap(TSR_data_rs_positive_summaries_ethnicity, width = 30)
data_summaries_rs_positive_ethnicity <- ggplot(TSR_data_rs_positive, aes(TSR_data_rs_positive_summaries_ethnicity)) + geom_bar() + xlab(NULL) + coord_flip()
data_summaries_ethnicity + labs(title = "Respondent ethnic self-identification", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_ethnicity3.png")
data_summaries_theology_positive_ethnicity <- ggplot(TSR_data_theology_positive, aes(TSR_data_theology_positive_summaries_ethnicity)) + geom_bar() + xlab(NULL) + coord_flip()
data_summaries_theology_positive_ethnicity + labs(title = "Respondent ethnic self-identification", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_ethnicity2.png")
data_summaries_theology_positive_ethnicity <- ggplot(TSR_data_theology_positive, aes(TSR_data_theology_positive_summaries_ethnicity)) + geom_bar() + xlab(NULL) + coord_flip()
data_summaries_theology_positive_ethnicity + labs(title = "Respondent ethnic self-identification - theology positive", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_ethnicity2.png")
data_summaries_rs_positive_ethnicity <- ggplot(TSR_data_rs_positive, aes(TSR_data_rs_positive_summaries_ethnicity)) + geom_bar() + xlab(NULL) + coord_flip()
data_summaries_ethnicity + labs(title = "Respondent ethnic self-identification - religion positive", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_ethnicity3.png")