added a few more charts for subgroups

This commit is contained in:
Jeremy Kidwell 2021-12-13 00:28:26 +00:00
parent e4b27b3308
commit 57e574d953
3 changed files with 134 additions and 95 deletions

BIN
.RData

Binary file not shown.

166
.Rhistory
View file

@ -1,86 +1,3 @@
#High interest in Sociology
hSocTheo <- mean(as.numeric(Soc_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
## Religious Studies Interest
#Low interest in Sociology
mean(as.numeric(Soc_subset_Low$InterestedinstudyingReligiousStudies), na.rm = TRUE)
#High interest in Sociology
mean(as.numeric(Soc_subset_High$InterestedinstudyingReligiousStudies), na.rm = TRUE)
### Philosophy ###
Philos_subset_Low <- TSR_data[TSR_data$GoodunderstandingofPhilosophy < 3 & TSR_data$GoodunderstandingofPhilosophy != 0, ]
Philos_subset_High <- TSR_data[TSR_data$GoodunderstandingofPhilosophy > 3, ]
## Theology Knowledge
#Low knowledge in Philosophy
mean(as.numeric(Philos_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
#High knowledge in Philosophy
mean(as.numeric(Philos_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
## Religious Studies Knowledge
#Low knowledge in Philosophy
mean(as.numeric(Philos_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE)
#High knowledge in Philosophy
mean(as.numeric(Philos_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE)
## Religious Studies Knowledge
#Low knowledge in Philosophy
mean(as.numeric(Philos_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE)
#High knowledge in Philosophy
mean(as.numeric(Philos_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE)
```{r Sociology}
### Sociology ###
Soc_subset_Low <- TSR_data[TSR_data$GoodunderstandingofSociology < 3 & TSR_data$GoodunderstandingofSociology != 0, ]
Soc_subset_High <- TSR_data[TSR_data$GoodunderstandingofSociology > 3, ]
## Theology knowledge
#Low knowledge in Sociology
mean(as.numeric(Soc_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
#High knowledge in Sociology
mean(as.numeric(Soc_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
## Religious Studies knowledge
#Low knowledge in Sociology
mean(as.numeric(Soc_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE)
#High knowledge in Sociology
mean(as.numeric(Soc_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE)
## Religious Studies knowledge
#Low knowledge in Sociology
mean(as.numeric(Soc_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE)
#High knowledge in Sociology
mean(as.numeric(Soc_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE)
```{r Psychology}
### Psychology ###
Psych_subset_Low <- TSR_data[TSR_data$GoodunderstandingofPsychology < 3 & TSR_data$GoodunderstandingofPsychology != 0, ]
Psych_subset_High <- TSR_data[TSR_data$GoodunderstandingofPsychology > 3, ]
## Theology knowledge
#Low knowledge in Psychology
mean(as.numeric(Psych_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
#High knowledge in Psychology
mean(as.numeric(Psych_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
## Religious Studies knowledge
#Low knowledge in Psychology
mean(as.numeric(Psych_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE)
#High knowledge in Psychology
mean(as.numeric(Psych_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE)
### History ###
Hist_subset_Low <- TSR_data[TSR_data$GoodunderstandingofHistory < 3 & TSR_data$GoodunderstandingofHistory != 0, ]
Hist_subset_High <- TSR_data[TSR_data$GoodunderstandingofHistory > 3, ]
require(devtools)
library(ggplot2)
require(ggplot2)
require(usethis)
require(devtools)
require(likert)
TSR_data <- read.csv("./data/TSR data complete.csv")
subject_data <- read.csv("./data/Subject data.csv")
TSR_data$Age <- factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say"))
age_pie <- pie(table(TSR_data$Age))
# Load RColorBrewer
# install.packages("RColorBrewer")
library(RColorBrewer)
# Define colour palettes for plots below
coul3 <- brewer.pal(3, "RdYlBu") # Using RdYlBu range to generate 3 colour palette: https://colorbrewer2.org/#type=diverging&scheme=RdYlBu&n=5
TSR_data$Age <- factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say"))
age_pie <- pie(table(TSR_data$Age), col=coul3)
TSR_data$Age <- factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say"))
View(TSR_data)
TSR_data <- read.csv("./data/TSR data complete.csv")
View(TSR_data)
TSR_data$Age <- factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say"))
age_pie <- pie(table(TSR_data$Age), col=coul3)
TSR_data$MOST.RECENT.year.of.study <- factor(TSR_data$MOST.RECENT.year.of.study, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9), labels = c("Year 11/S4/Year 12(NI)", "Year 12/S5/Year 13(NI)", "Year 13/S6/Year 14(NI)", "I am currently on a gap year", "I am currently on an undergraduate/HE college course", "I am in full-time employment", "I am unemployed", "Other", "Prefer not to say"))
TSR_data$Age <- age_pie <- pie(table(factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say"))), col=coul3)
@ -510,3 +427,86 @@ library(scales) # Used for adding percentages to bar charts
Religious_affiliation_bar3 <- ggplot(TSR_data_rs_positive, aes(TSR_data_rs_positive_summaries_religion, label=scales::percent(pct))) + geom_bar() + coord_flip()
Religious_affiliation_bar3 + labs(title = "Respondent religious self-identification, positive sentiment towards rs", x = "", y = "")
Religious_affiliation_bar3 <- ggplot(TSR_data_rs_positive, aes(TSR_data_rs_positive_summaries_religion) + geom_bar() + geom_text(label=scales::percent(pct))) + coord_flip()
knitr::opts_chunk$set(echo = TRUE)
library(ggplot2)
library(devtools)
library(usethis)
library(devtools)
library(likert)
# Load RColorBrewer
# install.packages("RColorBrewer")
library(RColorBrewer)
library("stringr") # Load stringr package, used for wrapping label text in plots
library(dplyr) # Used for filtering below
library(scales) # Used for adding percentages to bar charts
# Define colour palettes for plots below
coul3 <- brewer.pal(3, "RdYlBu") # Using RdYlBu range to generate 3 colour palette: https://colorbrewer2.org/#type=diverging&scheme=RdYlBu&n=5
TSR_data <- read.csv("./data/TSR data complete.csv")
subject_data <- read.csv("./data/Subject data.csv")
# Set up local workspace (as needed):
if (dir.exists("data") == FALSE) {
dir.create("data")
}
if (dir.exists("figures") == FALSE) {
dir.create("figures")
}
if (dir.exists("derivedData") == FALSE) {
dir.create("derivedData")
}
# Set up local workspace, as needed:
if (dir.exists("data") == FALSE) {
dir.create("data")
}
if (dir.exists("figures") == FALSE) {
dir.create("figures")
}
if (dir.exists("derivedData") == FALSE) {
dir.create("derivedData")
}
TSR_data_theology_positive_summaries_ethnicity <- factor(TSR_data_theology_positive$Ethnicity, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ,18, 19), labels = c("Arab", "Indian", "Pakistani", "Bangladeshi", "Chinese", "Any other Asian background", "Black - African", "Black - Caribbean", "Any other Black background", "Mixed - White and Black Caribbean", "Mixed - White and Black African", "Mixed - White and Black Asian", "Any other Mixed/Multiple Ethnic background", "White - British", "White - Irish", "Gypsy or Irish Traveller", "Any other White background", "Other Ethnic group", "Prefer not to say"))
TSR_data_theology_positive_summaries_ethnicity <- str_wrap(TSR_data_summaries_ethnicity, width = 30)
TSR_data_rs_positive_summaries_ethnicity <- factor(TSR_data_rs_positive$Ethnicity, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ,18, 19), labels = c("Arab", "Indian", "Pakistani", "Bangladeshi", "Chinese", "Any other Asian background", "Black - African", "Black - Caribbean", "Any other Black background", "Mixed - White and Black Caribbean", "Mixed - White and Black African", "Mixed - White and Black Asian", "Any other Mixed/Multiple Ethnic background", "White - British", "White - Irish", "Gypsy or Irish Traveller", "Any other White background", "Other Ethnic group", "Prefer not to say"))
TSR_data_rs_positive_summaries_ethnicity <- str_wrap(TSR_data_summaries_ethnicity, width = 30)
TSR_data__theology_positive_summaries_gender <- factor(TSR_data_theology_positive$Gender, levels = c(1, 2, 3, 4), labels = c("Male", "Female", "I identify my gender in another way", "Prefer not to say"))
# JK note: using stringr here to wrap axis titles
TSR_data__theology_positive_summaries_gender <- str_wrap(TSR_data__theology_positive_summaries_gender, width = 10)
TSR_data_rs_positive_summaries_gender <- factor(TSR_data_rs_positive$Gender, levels = c(1, 2, 3, 4), labels = c("Male", "Female", "I identify my gender in another way", "Prefer not to say"))
# JK note: using stringr here to wrap axis titles
TSR_data_rs_positive_summaries_gender <- str_wrap(TSR_data_rs_positive_summaries_gender, width = 10)
gender_bar2 <- ggplot(TSR_data_theology_positive, aes(TSR_data__theology_positive_summaries_gender)) + geom_bar()
gender_bar2 + labs(title = "Respondent gender self-identification, theology positive", x = "", y = "")
gender_bar2 + labs(title = "Respondent gender self-identification, theology positive", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_gender2.png")
gender_bar3 <- ggplot(TSR_data_rs_positive, aes(TSR_data_rs_positive_summaries_gender)) + geom_bar()
gender_bar3 + labs(title = "Respondent gender self-identification, rs positive", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_gender3.png")
data_summaries_theology_positive_ethnicity <- ggplot(TSR_data_theology_positive, aes(TSR_data_theology_positive_summaries_ethnicity)) + geom_bar() + xlab(NULL) + coord_flip()
data_summaries_theology_positive_ethnicity + labs(title = "Respondent ethnic self-identification, theology positive", x = "", y = "")
data_summaries_theology_positive_ethnicity + labs(title = "Respondent ethnic self-identification, theology positive", x = "", y = "")
data_summaries_theology_positive_ethnicity <- ggplot(TSR_data_theology_positive, aes(TSR_data_theology_positive_summaries_ethnicity)) + geom_bar() + xlab(NULL) + coord_flip()
data_summaries_theology_positive_ethnicity + labs(title = "Respondent ethnic self-identification, theology positive", x = "", y = "")
data_summaries_theology_positive_ethnicity + labs(title = "Respondent ethnic self-identification", x = "", y = "")
TSR_data_rs_negative_summaries_religion <- factor(TSR_data_rs_negative$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other"))
TSR_data_theology_positive_summaries_ethnicity <- factor(TSR_data_theology_positive$Ethnicity, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ,18, 19), labels = c("Arab", "Indian", "Pakistani", "Bangladeshi", "Chinese", "Any other Asian background", "Black - African", "Black - Caribbean", "Any other Black background", "Mixed - White and Black Caribbean", "Mixed - White and Black African", "Mixed - White and Black Asian", "Any other Mixed/Multiple Ethnic background", "White - British", "White - Irish", "Gypsy or Irish Traveller", "Any other White background", "Other Ethnic group", "Prefer not to say"))
TSR_data_theology_positive_summaries_ethnicity <- str_wrap(TSR_data_theology_positive_summaries_ethnicity, width = 30)
TSR_data_rs_positive_summaries_ethnicity <- factor(TSR_data_rs_positive$Ethnicity, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ,18, 19), labels = c("Arab", "Indian", "Pakistani", "Bangladeshi", "Chinese", "Any other Asian background", "Black - African", "Black - Caribbean", "Any other Black background", "Mixed - White and Black Caribbean", "Mixed - White and Black African", "Mixed - White and Black Asian", "Any other Mixed/Multiple Ethnic background", "White - British", "White - Irish", "Gypsy or Irish Traveller", "Any other White background", "Other Ethnic group", "Prefer not to say"))
TSR_data_rs_positive_summaries_ethnicity <- str_wrap(TSR_data_rs_positive_summaries_ethnicity, width = 30)
TSR_data_rs_positive_summaries_ethnicity <- str_wrap(TSR_data_rs_positive_summaries_ethnicity, width = 30)
data_summaries_rs_positive_ethnicity <- ggplot(TSR_data_rs_positive, aes(TSR_data_rs_positive_summaries_ethnicity)) + geom_bar() + xlab(NULL) + coord_flip()
data_summaries_ethnicity + labs(title = "Respondent ethnic self-identification", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_ethnicity3.png")
data_summaries_theology_positive_ethnicity <- ggplot(TSR_data_theology_positive, aes(TSR_data_theology_positive_summaries_ethnicity)) + geom_bar() + xlab(NULL) + coord_flip()
data_summaries_theology_positive_ethnicity + labs(title = "Respondent ethnic self-identification", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_ethnicity2.png")
data_summaries_theology_positive_ethnicity <- ggplot(TSR_data_theology_positive, aes(TSR_data_theology_positive_summaries_ethnicity)) + geom_bar() + xlab(NULL) + coord_flip()
data_summaries_theology_positive_ethnicity + labs(title = "Respondent ethnic self-identification - theology positive", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_ethnicity2.png")
data_summaries_rs_positive_ethnicity <- ggplot(TSR_data_rs_positive, aes(TSR_data_rs_positive_summaries_ethnicity)) + geom_bar() + xlab(NULL) + coord_flip()
data_summaries_ethnicity + labs(title = "Respondent ethnic self-identification - religion positive", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_ethnicity3.png")

View file

@ -13,9 +13,9 @@ library(likert)
# Load RColorBrewer
# install.packages("RColorBrewer")
library(RColorBrewer)
library("stringr") # Load stringr package, used for wrapping label text in plots
library(dplyr) # Used for filtering below
library(scales) # Used for adding percentages to bar charts
library("stringr") # Load stringr package, used for wrapping label text in plots
library(dplyr) # Used for filtering below
library(scales) # Used for adding percentages to bar charts
# Define colour palettes for plots below
coul3 <- brewer.pal(3, "RdYlBu") # Using RdYlBu range to generate 3 colour palette: https://colorbrewer2.org/#type=diverging&scheme=RdYlBu&n=5
@ -23,7 +23,7 @@ coul3 <- brewer.pal(3, "RdYlBu") # Using RdYlBu range to generate 3 colour palet
TSR_data <- read.csv("./data/TSR data complete.csv")
subject_data <- read.csv("./data/Subject data.csv")
# Set up local workspace:
# Set up local workspace, as needed:
if (dir.exists("data") == FALSE) {
dir.create("data")
}
@ -100,6 +100,23 @@ TSR_data_rs_positive_summaries_religion <- factor(TSR_data_rs_positive$Religious
TSR_data_rs_negative_summaries_religion <- factor(TSR_data_rs_negative$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other"))
TSR_data_theology_positive_summaries_ethnicity <- factor(TSR_data_theology_positive$Ethnicity, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ,18, 19), labels = c("Arab", "Indian", "Pakistani", "Bangladeshi", "Chinese", "Any other Asian background", "Black - African", "Black - Caribbean", "Any other Black background", "Mixed - White and Black Caribbean", "Mixed - White and Black African", "Mixed - White and Black Asian", "Any other Mixed/Multiple Ethnic background", "White - British", "White - Irish", "Gypsy or Irish Traveller", "Any other White background", "Other Ethnic group", "Prefer not to say"))
TSR_data_theology_positive_summaries_ethnicity <- str_wrap(TSR_data_theology_positive_summaries_ethnicity, width = 30)
TSR_data_rs_positive_summaries_ethnicity <- factor(TSR_data_rs_positive$Ethnicity, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ,18, 19), labels = c("Arab", "Indian", "Pakistani", "Bangladeshi", "Chinese", "Any other Asian background", "Black - African", "Black - Caribbean", "Any other Black background", "Mixed - White and Black Caribbean", "Mixed - White and Black African", "Mixed - White and Black Asian", "Any other Mixed/Multiple Ethnic background", "White - British", "White - Irish", "Gypsy or Irish Traveller", "Any other White background", "Other Ethnic group", "Prefer not to say"))
TSR_data_rs_positive_summaries_ethnicity <- str_wrap(TSR_data_rs_positive_summaries_ethnicity, width = 30)
TSR_data__theology_positive_summaries_gender <- factor(TSR_data_theology_positive$Gender, levels = c(1, 2, 3, 4), labels = c("Male", "Female", "I identify my gender in another way", "Prefer not to say"))
# JK note: using stringr here to wrap axis titles
TSR_data__theology_positive_summaries_gender <- str_wrap(TSR_data__theology_positive_summaries_gender, width = 10)
TSR_data_rs_positive_summaries_gender <- factor(TSR_data_rs_positive$Gender, levels = c(1, 2, 3, 4), labels = c("Male", "Female", "I identify my gender in another way", "Prefer not to say"))
# JK note: using stringr here to wrap axis titles
TSR_data_rs_positive_summaries_gender <- str_wrap(TSR_data_rs_positive_summaries_gender, width = 10)
# Calculate graphs
Religious_affiliation_bar <- ggplot(TSR_data, aes(TSR_data_summaries_religion)) + geom_bar() + coord_flip()
@ -109,7 +126,7 @@ ggsave("figures/TSR_data_summaries_religion.png")
# Additional graphs for theology/rs positive sentiment cohorts
# Theology
# Theology - religious identification
# JK note: need to add percentages to each line, as per https://stackoverflow.com/questions/52373049/display-percentage-on-ggplot-bar-chart-in-r
@ -125,14 +142,36 @@ Religious_affiliation_bar3 + labs(title = "Respondent religious self-identificat
# save to png file for reports
ggsave("figures/TSR_data_summaries_religion_rspositive.png")
irisNew <- iris %>% group_by(Species) %>%
summarize(count = n()) %>% # count records by species
mutate(pct = count/sum(count)) # find percent of total
# Theology positive - gender
gender_bar2 <- ggplot(TSR_data_theology_positive, aes(TSR_data_theology_positive_summaries_gender)) + geom_bar()
gender_bar2 + labs(title = "Respondent gender self-identification, theology positive", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_gender2.png")
# Religion positive - gender
gender_bar3 <- ggplot(TSR_data_rs_positive, aes(TSR_data_rs_positive_summaries_gender)) + geom_bar()
gender_bar3 + labs(title = "Respondent gender self-identification, rs positive", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_gender3.png")
# Theology positive - ethnicity
data_summaries_theology_positive_ethnicity <- ggplot(TSR_data_theology_positive, aes(TSR_data_theology_positive_summaries_ethnicity)) + geom_bar() + xlab(NULL) + coord_flip()
data_summaries_theology_positive_ethnicity + labs(title = "Respondent ethnic self-identification - theology positive", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_ethnicity2.png")
# Religion positive - ethnicity
data_summaries_rs_positive_ethnicity <- ggplot(TSR_data_rs_positive, aes(TSR_data_rs_positive_summaries_ethnicity)) + geom_bar() + xlab(NULL) + coord_flip()
data_summaries_ethnicity + labs(title = "Respondent ethnic self-identification - religion positive", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_ethnicity3.png")
ggplot(irisNew, aes(Species, pct, fill = Species)) +
geom_bar(stat='identity') +
geom_text(aes(label=scales::percent(pct)), position = position_stack(vjust = .5))+
scale_y_continuous(labels = scales::percent)
```
# Visualisations of LIKERT responses (RH):