Pie Charts and More Data Finagling

Figuring how to put frequencies of multiple response data into a clean format, then creating rough code for a simple pie chart (to be made pretty later).

Finished this for the 3 questions needing pie charts.
This commit is contained in:
rehughes07 2021-10-25 16:13:22 +01:00
parent 0b15014181
commit dd66f2f923
4 changed files with 246 additions and 65 deletions

View file

@ -31,7 +31,7 @@ Note that the `echo = FALSE` parameter was added to the code chunk to prevent pr
## Upload Data
```{r Data Upload}
connect_data = read.csv("connectDATA.csv")
connect_data = read.csv("~/Documents/Github/re_connect_survey/data/connectDATA.csv")
```
## Summary of Data
@ -60,6 +60,25 @@ pie(Q25_frequencies, labels = c("Maybe", "No", "Yes"))
# rough draft of piechart
```{r Q26 bar/pie}
Q26_data <- read.csv("~/Documents/Github/re_connect_survey/data/Q26_data.csv")
Q26_freq_data <- data.frame(c("Other Priorities", "Lack Subject Knowledge", "Lack Confidence", "Current Syllabus", "Pupil Disinterest", "Department Head", "Available Work Schemes", "Unavailable Resources", "Uncertain of Pedagogical Approach"), c(table(Q26_data[,2]) [names(table(Q26_data[,2])) == "TRUE"],
table(Q26_data[,3]) [names(table(Q26_data[,3])) == "TRUE"],
table(Q26_data[,4]) [names(table(Q26_data[,4])) == "TRUE"],
table(Q26_data[,5]) [names(table(Q26_data[,5])) == "TRUE"],
table(Q26_data[,6]) [names(table(Q26_data[,6])) == "TRUE"],
table(Q26_data[,7]) [names(table(Q26_data[,7])) == "TRUE"],
table(Q26_data[,8]) [names(table(Q26_data[,8])) == "TRUE"],
table(Q26_data[,9]) [names(table(Q26_data[,9])) == "TRUE"],
table(Q26_data[,10]) [names(table(Q26_data[,10])) == "TRUE"]))
head(Q26_freq_data)
names(Q26_freq_data)[1] <- "Reasons"
names(Q26_freq_data)[2] <- "Frequency"
head(Q26_freq_data)
pie(Q26_freq_data$Frequency, labels = c("Other Priorities", "Lack Subject Knowledge", "Lack Confidence", "Current Syllabus", "Pupil Disinterest", "Department Head", "Available Work Schemes", "Unavailable Resources", "Uncertain of Pedagogical Approach"))
```
pie(Q26_freq)
@ -67,7 +86,39 @@ pie(Q26_freq)
```{r Q3 bar/pie}
Q3_data <- read.csv("Q3.csv")
Q3_data <- read.csv("~/Documents/Github/re_connect_survey/data/Q3.csv")
#head(Q3_data)
#table(Q3_data [,3:7])
#pie(table(Q3_data [,3:7]))
Q3_data2 <- Q3_data[,3:7]
#head(Q3_data2)
#table(Q3_data2)
#table(Q3_data2[,1])
### want to take only the count of "True" (1) in each column. Then pie chart of the frequencies
#Q3_data3 <- read.csv("~/Documents/Github/re_connect_survey/data/Q3 copydata.csv")
#table(Q3_data3)
#count(Q3_data3, 1)
#table(Q3_data3) [names(table(Q3_data3)) == 1]
#table(Q3_data3)
table(Q3_data2[,1]) [names(table(Q3_data2[,1])) == "TRUE"]
test2 <- data.frame(c("Worldviews", "Religion", "Theology", "Ethics", "Philosophy"), c(table(Q3_data2[,1]) [names(table(Q3_data2[,1])) == "TRUE"],
table(Q3_data2[,2]) [names(table(Q3_data2[,2])) == "TRUE"],
table(Q3_data2[,3]) [names(table(Q3_data2[,3])) == "TRUE"],
table(Q3_data2[,4]) [names(table(Q3_data2[,4])) == "TRUE"],
table(Q3_data2[,5]) [names(table(Q3_data2[,5])) == "TRUE"]))
head(test2)
names(test2)[1] <- "Subject"
names(test2)[2] <- "Frequency"
head(test2)
pie(test2$Frequency, labels = c("Worldviews", "Religion", "Theology", "Ethics", "Philosophy"))
```
@ -75,7 +126,15 @@ Q3_data <- read.csv("Q3.csv")
pie(Q3_freq)
#also not optimal as pie...perhaps bar
#sum(Q3_data2)
Q3_1factor = as.factor(Q3_data2$Religion)
table(Q3_1factor)
#count(Q3_1factor, "TRUE")
#test = replace(Q3_1factor, "TRUE", 1)
#test
#Q3_1factor
- RH: display summaries of responses to key questions for Q22 (syllabus evaluation), Q23, Q24, Q25, Q26, Q27, with subsetting by:
- Q8 (school type)
@ -113,4 +172,4 @@ pie(Q3_freq)
```{r Correlation 1}
```
- RH: test for correlation between responses to religion questions: Q12-14, Q15-16 and Q21 and responses to Q22, Q23, Q24, Q25, Q27, Q30
- RH: test for correlation between responses to religion questions: Q12-14, Q15-16 and Q21 and responses to Q22, Q23, Q27, [Q24, Q25, Q30]

View file

@ -1,64 +1,14 @@
connect_data = read.csv("connectDATA.csv")
connect_data = read.csv("connectDATA.csv")
head(connect_data)
View(connect_data)
table(connect_data$Q25)
Q25_frequencies = table(connect_data$Q25)
Q25_frequencies = table(connect_data$Q25)
Q26_freq = table(connect_data$Q26)
Q25_frequencies = table(connect_data$Q25)
Q26_freq = table(connect_data$Q26)
Q26_freq
connect_data = read.csv("connectDATA.csv")
head(connect_data)
connect_data = read.csv("connectDATA.csv")
connect_data = read.csv("connectDATA.csv")
view(connect_data)
View(connect_data)
Q25_frequencies = table(connect_data$Q25)
Q26_freq = table(connect_data$Q26)
Q26_freq
Q25_frequencies = table(connect_data$Q25)
Q_25_frequencies
Q26_freq = table(connect_data$Q26)
Q26_freq
Q25_frequencies = table(connect_data$Q25)
Q_25frequencies
Q26_freq = table(connect_data$Q26)
Q26_freq
Q_25frequencies
Q25_frequencies = table(connect_data$Q25)
Q25_25frequencies
Q25_frequencies
test3 = as.factor(connect_data$Q3, levels = c(1, 2, 3, 4, 5), labels = c("Worldviews", "Religion", "Theology", "Ethics", "Philosophy"))
pie(connect_data$Q25, labels = names(connect_data$Q25))
pie(Q25_frequencies, labels = names(connect_data$Q25))
pie(Q25_frequencies, labels = names(c("maybe", "yes", "no")))
pie(Q25_frequencies, labels = names(connect_data$Q25))
names(Q25_frequencies = c("Maybe", "No", "Yes"))
pie(Q25_frequencies, labels = c("Maybe", "No", "Yes"))
pie(Q26_freq)
Q25_frequencies = table(connect_data$Q25)
Q25_frequencies
Q26_freq = table(connect_data$Q26)
Q26_freq
Q3_freq = table(connect_data$Q3)
Q25_frequencies = table(connect_data$Q25)
Q25_frequencies
Q26_freq = table(connect_data$Q26)
Q26_freq
Q3_freq = table(connect_data$Q3)
Q3_freq
pie(Q3_freq)
knitr::opts_chunk$set(echo = TRUE)
pie(Q25_frequencies, labels = c("Maybe", "No", "Yes"))
cor(Q_20, Q_22, data=connect_data)
cor(connect_data$Q_20, connect_dataQ_22)
cor(connect_data$Q_20, connect_data$Q_22)
Q3_data <- read.csv("Q3.csv")
connect_data = read.csv("connectDATA.csv")
read.csv("connectDATA.csv")
## Summary of Data
Data summary/visualisation with subsetting:
- RH: display simple summary of data (bar/pie chart) to Q25/26, Q3
read.csv("connectDATA.csv")
setwd("~/Documents/GitHub/re_connect_survey/data")
Q3_data <- read.csv("Q3.csv")
read.csv("Q3.csv)
data=read.csv("Q3.csv)
Q3_data <- read.csv("Q3.csv")
Q3_data <- read.csv("Q3.csv")
setwd("~/Documents/GitHub/re_connect_survey/data")
connect_data = read.csv("connectDATA.csv")
setwd("~/Documents/GitHub/re_connect_survey/data")
connect_data = read.csv("connectDATA.csv")
Q3data = read.csv("Q3.csv")
connect_data = read.csv("~/gits/re_connect_survey/data/connectDATA.csv")

86
data/Q26_data.csv Normal file
View file

@ -0,0 +1,86 @@
Q26,Other Priorities,Lack Subject Knowledge,Lack Confidence,Current Syllabus,Pupil Disinterest,Department Head,Available Work Schemes,Unavailable Resources,Uncertain of Pedagogical Approach
4,FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE
4,FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE
4,FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE
"7,8,9",FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,TRUE,TRUE,TRUE
3,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE
,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE
"1,4",TRUE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE
,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE
1,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE
4,FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE
"1,3,8,9",TRUE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,TRUE,TRUE
"1,5,9",TRUE,FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,TRUE
"7,8",FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,TRUE,TRUE,FALSE
"1,4",TRUE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE
4,FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE
1,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE
7,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,TRUE,FALSE,FALSE
"7,8",FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,TRUE,TRUE,FALSE
"4,7,9",FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE
"7,9",FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,TRUE,FALSE,TRUE
8,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,TRUE,FALSE
1,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE
"1,7",TRUE,FALSE,FALSE,FALSE,FALSE,FALSE,TRUE,FALSE,FALSE
,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE
,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE
4,FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE
"3,4",FALSE,FALSE,TRUE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE
"7,8",FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,TRUE,TRUE,FALSE
,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE
"1,4",TRUE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE
"2,4,7,8",FALSE,TRUE,FALSE,TRUE,FALSE,FALSE,TRUE,TRUE,FALSE
"4,6,7,8",FALSE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE,TRUE,FALSE
"4,7,8",FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,TRUE,TRUE,FALSE
"1,7,8,9",TRUE,FALSE,FALSE,FALSE,FALSE,FALSE,TRUE,TRUE,TRUE
1,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE
"2,3",FALSE,TRUE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE
"1,2",TRUE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE
"4,6,7",FALSE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE,FALSE,FALSE
"2,7,8",FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,TRUE,TRUE,FALSE
,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE
7,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,TRUE,FALSE,FALSE
4,FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE
"7,9",FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,TRUE,FALSE,TRUE
"7,8,9",FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,TRUE,TRUE,TRUE
1,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE
,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE
4,FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE
,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE
"4,9",FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,TRUE
"4,7,9",FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE
"2,4,6",FALSE,TRUE,FALSE,TRUE,FALSE,TRUE,FALSE,FALSE,FALSE
"1,7,8",TRUE,FALSE,FALSE,FALSE,FALSE,FALSE,TRUE,TRUE,FALSE
4,FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE
4,FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE
7,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,TRUE,FALSE,FALSE
"4,8",FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,TRUE,FALSE
,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE
"7,8",FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,TRUE,TRUE,FALSE
"4,8",FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,TRUE,FALSE
"4,7,8",FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,TRUE,TRUE,FALSE
6,FALSE,FALSE,FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE
3,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE
1,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE
"1,2,3,8",TRUE,TRUE,TRUE,FALSE,FALSE,FALSE,FALSE,TRUE,FALSE
"4,8",FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,TRUE,FALSE
"2,3,4,8",FALSE,TRUE,TRUE,TRUE,FALSE,FALSE,FALSE,TRUE,FALSE
,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE
"1,7",TRUE,FALSE,FALSE,FALSE,FALSE,FALSE,TRUE,FALSE,FALSE
"1,4",TRUE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE
"3,8,9",FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,TRUE,TRUE
"2,3,4,7",FALSE,TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,FALSE
4,FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE
"4,7,8",FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,TRUE,TRUE,FALSE
4,FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE
,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE
,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE
,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE
"2,4,7",FALSE,TRUE,FALSE,TRUE,FALSE,FALSE,TRUE,FALSE,FALSE
"4,7,8",FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,TRUE,TRUE,FALSE
3,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE
9,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,TRUE
"3,4,7,8",FALSE,FALSE,TRUE,TRUE,FALSE,FALSE,TRUE,TRUE,FALSE
4,FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,FALSE,FALSE,FALSE
"2,3,4,7,8,9",FALSE,TRUE,TRUE,TRUE,FALSE,FALSE,TRUE,TRUE,TRUE
"4,7",FALSE,FALSE,FALSE,TRUE,FALSE,FALSE,TRUE,FALSE,FALSE
1 Q26 Other Priorities Lack Subject Knowledge Lack Confidence Current Syllabus Pupil Disinterest Department Head Available Work Schemes Unavailable Resources Uncertain of Pedagogical Approach
2 4 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
3 4 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
4 4 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
5 7,8,9 FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
6 3 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
7 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
8 1,4 TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
9 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
10 1 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
11 4 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
12 1,3,8,9 TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE
13 1,5,9 TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE
14 7,8 FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
15 1,4 TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
16 4 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
17 1 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
18 7 FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
19 7,8 FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
20 4,7,9 FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE
21 7,9 FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE
22 8 FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
23 1 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
24 1,7 TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
25 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
26 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
27 4 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
28 3,4 FALSE FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE
29 7,8 FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
30 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
31 1,4 TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
32 2,4,7,8 FALSE TRUE FALSE TRUE FALSE FALSE TRUE TRUE FALSE
33 4,6,7,8 FALSE FALSE FALSE TRUE FALSE TRUE TRUE TRUE FALSE
34 4,7,8 FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE
35 1,7,8,9 TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
36 1 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
37 2,3 FALSE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
38 1,2 TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
39 4,6,7 FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE FALSE
40 2,7,8 FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
41 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
42 7 FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
43 4 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
44 7,9 FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE
45 7,8,9 FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
46 1 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
47 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
48 4 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
49 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
50 4,9 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE
51 4,7,9 FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE TRUE
52 2,4,6 FALSE TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE
53 1,7,8 TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
54 4 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
55 4 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
56 7 FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
57 4,8 FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE
58 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
59 7,8 FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE
60 4,8 FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE
61 4,7,8 FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE
62 6 FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
63 3 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
64 1 TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
65 1,2,3,8 TRUE TRUE TRUE FALSE FALSE FALSE FALSE TRUE FALSE
66 4,8 FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE
67 2,3,4,8 FALSE TRUE TRUE TRUE FALSE FALSE FALSE TRUE FALSE
68 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
69 1,7 TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
70 1,4 TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
71 3,8,9 FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE TRUE
72 2,3,4,7 FALSE TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE
73 4 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
74 4,7,8 FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE
75 4 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
76 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
77 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
78 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
79 2,4,7 FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE
80 4,7,8 FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE FALSE
81 3 FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
82 9 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
83 3,4,7,8 FALSE FALSE TRUE TRUE FALSE FALSE TRUE TRUE FALSE
84 4 FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
85 2,3,4,7,8,9 FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE TRUE
86 4,7 FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE

86
data/Q3 copydata.csv Normal file
View file

@ -0,0 +1,86 @@
Worldviews,Religion,Theology,Ethics,Philosophy
2,1,1,1,1
1,1,1,1,1
1,1,1,1,1
2,1,2,2,1
1,1,1,1,1
1,1,1,2,1
1,1,1,1,1
2,1,1,1,1
1,1,1,1,1
1,1,1,1,1
1,1,1,2,1
1,1,1,1,1
1,1,1,1,1
2,1,2,1,1
1,1,1,1,1
2,1,2,2,2
1,1,1,1,1
1,1,2,1,1
2,1,2,2,2
1,1,1,1,1
1,1,1,1,1
1,1,1,1,1
2,1,1,1,1
1,1,1,1,1
1,1,1,1,1
2,1,2,2,2
1,1,2,2,2
1,1,2,2,2
1,1,2,2,2
1,1,1,1,1
2,1,2,2,2
1,1,1,1,1
1,1,1,1,2
1,1,1,1,1
1,1,1,1,1
1,1,2,2,2
1,1,1,1,1
1,1,1,1,1
2,1,1,2,1
1,1,1,1,1
2,1,2,2,2
2,1,2,2,2
2,1,2,2,2
1,1,2,2,2
1,1,1,1,1
1,1,1,1,1
1,1,1,1,1
2,1,2,2,2
2,1,2,2,2
2,1,2,2,2
1,1,2,2,2
2,1,2,2,2
2,1,2,1,1
1,1,2,1,1
2,1,1,1,1
1,1,1,2,2
2,1,2,2,2
1,1,1,2,1
1,1,1,1,1
2,1,2,2,2
2,1,1,1,1
1,1,2,2,2
1,1,1,1,1
1,1,1,1,1
2,1,1,1,1
1,1,2,2,2
1,1,2,2,2
2,2,2,1,2
1,1,1,1,1
2,1,2,2,2
1,1,2,1,1
1,1,2,2,2
1,1,2,2,2
1,1,2,2,2
2,1,2,2,2
2,1,1,1,1
1,1,2,2,2
2,1,2,2,2
2,1,2,2,2
2,1,2,2,2
1,1,2,1,2
1,2,2,2,1
1,1,2,2,2
1,1,2,1,1
2,1,2,2,2
1 Worldviews Religion Theology Ethics Philosophy
2 2 1 1 1 1
3 1 1 1 1 1
4 1 1 1 1 1
5 2 1 2 2 1
6 1 1 1 1 1
7 1 1 1 2 1
8 1 1 1 1 1
9 2 1 1 1 1
10 1 1 1 1 1
11 1 1 1 1 1
12 1 1 1 2 1
13 1 1 1 1 1
14 1 1 1 1 1
15 2 1 2 1 1
16 1 1 1 1 1
17 2 1 2 2 2
18 1 1 1 1 1
19 1 1 2 1 1
20 2 1 2 2 2
21 1 1 1 1 1
22 1 1 1 1 1
23 1 1 1 1 1
24 2 1 1 1 1
25 1 1 1 1 1
26 1 1 1 1 1
27 2 1 2 2 2
28 1 1 2 2 2
29 1 1 2 2 2
30 1 1 2 2 2
31 1 1 1 1 1
32 2 1 2 2 2
33 1 1 1 1 1
34 1 1 1 1 2
35 1 1 1 1 1
36 1 1 1 1 1
37 1 1 2 2 2
38 1 1 1 1 1
39 1 1 1 1 1
40 2 1 1 2 1
41 1 1 1 1 1
42 2 1 2 2 2
43 2 1 2 2 2
44 2 1 2 2 2
45 1 1 2 2 2
46 1 1 1 1 1
47 1 1 1 1 1
48 1 1 1 1 1
49 2 1 2 2 2
50 2 1 2 2 2
51 2 1 2 2 2
52 1 1 2 2 2
53 2 1 2 2 2
54 2 1 2 1 1
55 1 1 2 1 1
56 2 1 1 1 1
57 1 1 1 2 2
58 2 1 2 2 2
59 1 1 1 2 1
60 1 1 1 1 1
61 2 1 2 2 2
62 2 1 1 1 1
63 1 1 2 2 2
64 1 1 1 1 1
65 1 1 1 1 1
66 2 1 1 1 1
67 1 1 2 2 2
68 1 1 2 2 2
69 2 2 2 1 2
70 1 1 1 1 1
71 2 1 2 2 2
72 1 1 2 1 1
73 1 1 2 2 2
74 1 1 2 2 2
75 1 1 2 2 2
76 2 1 2 2 2
77 2 1 1 1 1
78 1 1 2 2 2
79 2 1 2 2 2
80 2 1 2 2 2
81 2 1 2 2 2
82 1 1 2 1 2
83 1 2 2 2 1
84 1 1 2 2 2
85 1 1 2 1 1
86 2 1 2 2 2