Data Finagling and Analysis

Created new .csv file for the analyses columns Qs [22, 23, 27] (in order to be less messy extracting columns). Separated out answers to Q20 in order to test whether there is a different in response.

Sorted out ANOVA and MANOVA analyses - preliminary results indicate no significant difference on Q22 or Q27 in regards to social issues of importance. Significant diff on Q23 with economy, health and environment - explore means to see where. Could be interesting
This commit is contained in:
rehughes07 2021-11-02 18:08:31 +00:00
parent ff5baa8305
commit 2a5004e92f
2 changed files with 163 additions and 2 deletions

View file

@ -74,6 +74,7 @@ pie(Q26_freq)
#very messy as a pie chart - split by type? Or is it important to see crossover #very messy as a pie chart - split by type? Or is it important to see crossover
Could potentially see crossover with crosstabs by type (since response is now binary variable T/F), maybe chi square; perhaps just descriptives Could potentially see crossover with crosstabs by type (since response is now binary variable T/F), maybe chi square; perhaps just descriptives
```{r Q3 bar/pie} ```{r Q3 bar/pie}
@ -112,8 +113,9 @@ pie(test2$Frequency, labels = c("Worldviews", "Religion", "Theology", "Ethics",
# JK note on Q3: consider here whether to use alternative forms of visualiation to reflect the overlaps when respondents picked multiple categories in responses # JK note on Q3: consider here whether to use alternative forms of visualiation to reflect the overlaps when respondents picked multiple categories in responses
``` ```
xtabs(Frequency ~ Subject, test2)
pie(Q3_freq) pie(Q3_freq)
#also not optimal as pie...perhaps bar #also not optimal as pie...perhaps bar
@ -159,9 +161,82 @@ table(Q3_1factor)
- Make Q20 a factor with 14 levels - Make Q20 a factor with 14 levels
- Collapse 2 Q22 columns into one mean for analyses - Collapse 2 Q22 columns into one mean for analyses
- Analyse 1 way anova Q20 (14 levels) by Q22; Q23[1-2]; Q27[1-7] - Analyse 1 way anova Q20 (14 levels) by Q22; Q23[1-2]; Q27[1-7]
- 1 way within subjects?? Though not all participants ticked every box... Would it then be best to separate them out and do 14 separate analyses with bonferroni correction due to the multiple tests? - could then be 14 different t tests based on whether they ticked each one as important or not... Many analyses but that may be the most straightforward way to go. Factorial mixed ANOVA? 14 predictors, each with 2 levels (yes/no)??
- 14 predictors, within subjects, 2 levels (yes/no). DV as responses to questions. Q22 would be a factorial between subjects (only 1 option on IVs) ANOVA. Qs 23, 27 would be factorial between subjects MANOVA
```{r Correlation 1} ```{r Analyses 1 - As Factor}
social_issues_data <- read.csv("./data/Q20_data.csv")
head(social_issues_data)
# All 14 as factors, with 2 levels: 1=YES, 2=NO
social_issues_data$brexit <- factor(social_issues_data$brexit, levels = c(1, 2), labels = c("Yes", "No"))
class(social_issues_data$brexit)
#social_issues_data[ ,4:5] <- factor(social_issues_data[ ,4:5], levels = c(1, 2), labels = c("Yes", "No"))
#Did not work; made 2 columns "NA" so am going through to make factors individually
### OR ###
#social_issues_data[ ,4:5] <- lapply(social_issues_data[ ,4:5], factor(social_issues_data[ ,4:5], levels = c(1, 2), labels = c("Yes", "No")))
social_issues_data$economy <- factor(social_issues_data$economy, levels = c(1, 2), labels = c("Yes", "No"))
social_issues_data$immigration <- factor(social_issues_data$immigration, levels = c(1, 2), labels = c("Yes", "No"))
social_issues_data$crime <- factor(social_issues_data$crime, levels = c(1, 2), labels = c("Yes", "No"))
social_issues_data$health <- factor(social_issues_data$health, levels = c(1, 2), labels = c("Yes", "No"))
social_issues_data$education <- factor(social_issues_data$education, levels = c(1, 2), labels = c("Yes", "No"))
social_issues_data$housing <- factor(social_issues_data$housing, levels = c(1, 2), labels = c("Yes", "No"))
social_issues_data$welfare <- factor(social_issues_data$welfare, levels = c(1, 2), labels = c("Yes", "No"))
social_issues_data$defence <- factor(social_issues_data$defence, levels = c(1, 2), labels = c("Yes", "No"))
social_issues_data$environment <- factor(social_issues_data$environment, levels = c(1, 2), labels = c("Yes", "No"))
social_issues_data$tax <- factor(social_issues_data$tax, levels = c(1, 2), labels = c("Yes", "No"))
social_issues_data$pensions <- factor(social_issues_data$pensions, levels = c(1, 2), labels = c("Yes", "No"))
social_issues_data$family.life <- factor(social_issues_data$family.life, levels = c(1, 2), labels = c("Yes", "No"))
social_issues_data$transport <- factor(social_issues_data$transport, levels = c(1, 2), labels = c("Yes", "No"))
```
``` {r Analyses 2 - ANOVA and MANOVA}
## Q22; Q23[1-2]; Q27[1-7]
#Q22_average
#Q23_1, Q23_2
#Q27_1 - Q27_7
#t.test to see if difference in one variable - Q22_average
hist(social_issues_data$Q22_average)
t.test(Q22_average~brexit, data = social_issues_data, paired = FALSE)
#no significant difference between scores on Q22, and whether they thought brexit was important
Q_22test <- aov(Q22_average ~ brexit + economy + immigration + crime + health + education + housing + welfare + defence + environment + tax + pensions + family.life + transport, data = social_issues_data)
summary(Q_22test)
#no significant different between scores on Q22 and their opinion on social issues
Q_23test <- manova(cbind(Q23_1, Q23_2) ~ brexit + economy + immigration + crime + health + education + housing + welfare + defence + environment + tax + pensions + family.life + transport, data = social_issues_data)
summary(Q_23test)
#significant difference between scores on Q23 with economy, health, and environment
econ <- aggregate(cbind(Q23_1, Q23_2) ~ economy, data = social_issues_data, FUN = mean)
health <- aggregate(cbind(Q23_1, Q23_2) ~ health, data = social_issues_data, FUN = mean)
env <- aggregate(cbind(Q23_1, Q23_2) ~ environment, data = social_issues_data, FUN = mean)
#SORT OUT MEANS FOR THIS -- interesting pattern viewed with means
Q_27test <- manova(cbind(Q27_1, Q27_2, Q27_3, Q27_4, Q27_5, Q27_6, Q27_7) ~ brexit + economy + immigration + crime + health + education + housing + welfare + defence + environment + tax + pensions + family.life + transport, data = social_issues_data)
summary(Q_27test)
#No significant difference in responses to Q27 based on what they considered important
``` ```
- RH: test for correlation between responses to religion questions: Q12-14, Q15-16 and Q21 and responses to Q22, Q23, Q27, [Q24, Q25, Q30] - RH: test for correlation between responses to religion questions: Q12-14, Q15-16 and Q21 and responses to Q22, Q23, Q27, [Q24, Q25, Q30]

86
data/Q20_data.csv Normal file
View file

@ -0,0 +1,86 @@
Q20,Q20_recode,brexit,economy,immigration,crime,health,education,housing,welfare,defence,environment,tax,pensions,family life,transport,Q22_1,Q22_2,Q22_average,Q23_1,Q23_2,Q27_1,Q27_2,Q27_3,Q27_4,Q27_5,Q27_6,Q27_7
"health,education,environment","5,6,10",2,2,2,2,1,1,2,2,2,1,2,2,2,2,4,4,4,3,5,4,4,4,4,4,4,4
"economy,immigration,crime,health,education,housing,welfare,defence,environment,family life,transport","2,3,4,5,6,7,8,9,10,13,14",2,1,1,1,1,1,1,1,1,1,2,2,1,1,4,3,3.5,2,5,4,5,5,3,4,4,4
"crime,health,housing,welfare,environment","4,5,7,8,10",2,2,2,1,1,2,1,1,2,1,2,2,2,2,3,3,3,3,4,4,4,4,4,4,4,4
"brexit,economy,immigration,crime,health,education,housing,welfare,defence,environment,tax,pensions,family life,transport","1,2,3,4,5,6,7,8,9,10,11,12,13,14",1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,2,3,4,5,4,3,2,3,2,2,2
"health,education,housing,welfare,environment,family life","5,6,7,8,10,13",2,2,2,2,1,1,1,1,2,1,2,2,1,2,4,2,3,1,4,5,4,2,5,4,3,3
"brexit,economy,immigration,crime,health,education,housing,welfare,environment,tax,pensions,family life","1,2,3,4,5,6,7,8,10,11,12,13",1,1,1,1,1,1,1,1,2,1,1,1,1,2,4,3,3.5,3,3,4,4,2,3,2,3,2
"crime,housing,environment","4,7,10",2,2,2,1,2,2,1,2,2,1,2,2,2,2,5,5,5,4,5,4,4,4,4,4,4,4
,,2,2,2,2,2,2,2,2,2,2,2,2,2,2,5,5,5,5,1,5,5,5,5,5,5,5
"economy,crime,health,welfare,environment","2,4,5,8,10",2,1,2,1,1,2,2,1,2,1,2,2,2,2,5,5,5,5,5,5,5,5,5,5,5,4
"crime,health,education,housing,welfare,environment,family life","4,5,6,7,8,10,13",2,2,2,1,1,1,1,1,2,1,2,2,1,2,4,4,4,3,5,4,4,4,4,4,4,4
"immigration,crime,health,education,housing,welfare,environment,family life","3,4,5,6,7,8,10,13",2,2,1,1,1,1,1,1,2,1,2,2,1,2,2,2,2,2,4,5,4,2,3,2,3,2
"health,education,environment","5,6,10",2,2,2,2,1,1,2,2,2,1,2,2,2,2,2,2,2,4,4,3,4,2,4,4,4,3
"immigration,crime,health,housing,welfare,family life","3,4,5,7,8,13",2,2,1,1,1,2,1,1,2,2,2,2,1,2,4,4,4,3,4,4,4,4,4,4,5,4
"economy,immigration,health,education,housing,environment,pensions","2,3,5,6,7,10,12",2,1,1,2,1,1,1,2,2,1,2,1,2,2,3,3,3,2,4,3,3,3,4,4,4,5
"brexit,economy,immigration,crime,health,education,housing,welfare,environment,family life","1,2,3,4,5,6,7,8,10,13",1,1,1,1,1,1,1,1,2,1,2,2,1,2,5,4,4.5,2,4,4,4,2,5,3,4,3
"immigration,crime,health,education,welfare,family life","3,4,5,6,8,13",2,2,1,1,1,1,2,1,2,2,2,2,1,2,4,2,3,2,3,4,4,3,2,3,3,3
"health,education,housing,welfare,environment,pensions,family life,transport","5,6,7,8,10,12,13,14",2,2,2,2,1,1,1,1,2,1,2,1,1,1,5,5,5,2,5,5,5,2,5,5,5,2
"economy,education,environment","2,6,10",2,1,2,2,2,1,2,2,2,1,2,2,2,2,4,4,4,2,4,4,4,4,3,4,4,4
"health,education,welfare,environment","5,6,8,10",2,2,2,2,1,1,2,1,2,1,2,2,2,2,4,2,3,2,3,2,2,2,1,2,3,1
"brexit,economy,immigration,health,education,housing,welfare,environment","1,2,3,5,6,7,8,10",1,1,1,2,1,1,1,1,2,1,2,2,2,2,4,2,3,1,5,4,4,4,4,4,2,2
"brexit,economy,immigration,crime,health,education,housing,welfare,defence,environment,tax,pensions,family life,transport","1,2,3,4,5,6,7,8,9,10,11,12,13,14",1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,4,4.5,4,3,5,5,4,5,5,5,5
"brexit,economy,immigration,crime,health,education,housing,welfare,defence,environment,tax,pensions,family life,transport","1,2,3,4,5,6,7,8,9,10,11,12,13,14",1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,5,5,5,3,4,4,4,5,5,4,5
"brexit,economy,immigration,crime,health,education,housing,welfare,defence,environment,tax,pensions,family life,transport","1,2,3,4,5,6,7,8,9,10,11,12,13,14",1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,4,4.5,4,4,4,5,3,3,4,3,3
"brexit,economy,immigration,crime,health,education,housing,welfare,defence,environment,tax,pensions,family life,transport","1,2,3,4,5,6,7,8,9,10,11,12,13,14",1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,4,4.5,2,3,5,5,4,5,5,5,4
"economy,immigration,health,education,environment","2,3,5,6,10",2,1,1,2,1,1,2,2,2,1,2,2,2,2,5,4,4.5,2,3,5,5,4,4,5,5,4
"economy,health,education,housing,environment,family life","2,5,6,7,10,13",2,1,2,2,1,1,1,2,2,1,2,2,1,2,5,5,5,4,4,5,5,5,5,5,5,5
"immigration,crime,health,education,housing,environment,family life","3,4,5,6,7,10,13",2,2,1,1,1,1,1,2,2,1,2,2,1,2,4,2,3,2,5,5,5,4,2,4,2,2
"health,education,housing,welfare,environment,family life","5,6,7,8,10,13",2,2,2,2,1,1,1,1,2,1,2,2,1,2,4,4,4,2,4,4,4,2,4,4,4,3
"crime,health,education,welfare,environment,family life","4,5,6,8,10,13",2,2,2,1,1,1,2,1,2,1,2,2,1,2,4,2,3,2,1,5,5,2,4,4,4,4
"immigration,crime,health,education,welfare,environment,tax,transport","3,4,5,6,8,10,11,14",2,2,1,1,1,1,2,1,2,1,1,2,2,1,4,2,3,4,4,5,5,4,4,2,4,2
"crime,health,education,housing,welfare,family life","4,5,6,7,8,13",2,2,2,1,1,1,1,1,2,2,2,2,1,2,4,4,4,2,2,4,4,4,1,2,2,2
"brexit,economy,immigration,crime,health,education,housing,welfare,defence,environment,tax,pensions,family life,transport","1,2,3,4,5,6,7,8,9,10,11,12,13,14",1,1,1,1,1,1,1,1,1,1,1,1,1,1,4,3,3.5,3,4,4,5,3,4,5,5,3
"economy,immigration,crime,health,education,housing,welfare,environment,family life","2,3,4,5,6,7,8,10,13",2,1,1,1,1,1,1,1,2,1,2,2,1,2,5,4,4.5,4,5,5,5,5,4,4,4,4
"immigration,health,education,housing,welfare,environment","3,5,6,7,8,10",2,2,1,2,1,1,1,1,2,1,2,2,2,2,4,4,4,4,4,4,5,4,5,5,5,4
"immigration,crime,health,education,housing,welfare,defence,environment,tax,pensions,family life,transport","3,4,5,6,7,8,9,10,11,12,13,14",2,2,1,1,1,1,1,1,1,1,1,1,1,1,4,4,4,2,3,4,4,3,5,4,4,4
"immigration,education,family life","3,6,13",2,2,1,2,2,1,2,2,2,2,2,2,1,2,4,3,3.5,4,3,4,2,4,1,2,2,2
"economy,immigration,health,education,environment,family life","2,3,5,6,10,13",2,1,1,2,1,1,2,2,2,1,2,2,1,2,4,3,3.5,4,5,5,5,2,4,4,5,2
"brexit,economy,immigration,crime,health,education,housing,environment,family life","1,2,3,4,5,6,7,10,13",1,1,1,1,1,1,1,2,2,1,2,2,1,2,5,5,5,4,4,3,3,4,4,4,4,4
"brexit,economy,immigration,crime,health,education,housing,welfare,defence,environment,tax,pensions,family life,transport","1,2,3,4,5,6,7,8,9,10,11,12,13,14",1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,5,4,2,3,4,3,2
"immigration,health,education,welfare,environment,tax","3,5,6,8,10,11",2,2,1,2,1,1,2,1,2,1,1,2,2,2,5,4,4.5,4,3,4,5,5,3,2,4,4
"immigration,health,education,housing,environment,family life","3,5,6,7,10,13",2,2,1,2,1,1,1,2,2,1,2,2,1,2,4,4,4,4,5,5,5,4,4,5,5,4
"health,education,welfare,environment,family life","5,6,8,10,13",2,2,2,2,1,1,2,1,2,1,2,2,1,2,3,3,3,3,4,3,3,3,3,3,3,3
"economy,immigration,crime,health,education,housing,welfare,environment,tax,pensions,family life,transport","2,3,4,5,6,7,8,10,11,12,13,14",2,1,1,1,1,1,1,1,2,1,1,1,1,1,4,3,3.5,4,5,4,5,4,4,4,4,4
"health,education,housing,environment,family life","5,6,7,10,13",2,2,2,2,1,1,1,2,2,1,2,2,1,2,4,4,4,3,3,4,4,3,3,4,4,3
,,2,2,2,2,2,2,2,2,2,2,2,2,2,2,5,5,5,4,3,,,,,,,
,,2,2,2,2,2,2,2,2,2,2,2,2,2,2,5,4,4.5,4,3,5,5,5,5,5,5,4
"immigration,crime,health,education,housing,welfare,environment,family life,transport","3,4,5,6,7,8,10,13,14",2,2,1,1,1,1,1,1,2,1,2,2,1,1,1,1,1,1,5,5,5,2,2,4,4,2
,,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,2,3,1,3,,,,,,,
,,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,2,4,,,,,,,
"immigration,health,education,housing,welfare,environment,family life","3,5,6,7,8,10,13",2,2,1,2,1,1,1,1,2,1,2,2,1,2,4,4,4,3,5,4,4,4,3,4,3,3
,,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,,,,,,,
,,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,3,5,5,5,5,5,5,5,5
,,2,2,2,2,2,2,2,2,2,2,2,2,2,2,5,4,4.5,2,3,4,4,4,3,4,4,4
,,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,2.5,3,5,5,4,4,3,4,3,3
,,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,2,2,4,4,3,4,4,4,4
"economy,health,education,housing,environment","2,5,6,7,10",2,1,2,2,1,1,1,2,2,1,2,2,2,2,4,4,4,4,5,4,5,5,5,4,5,5
"brexit,economy,immigration,crime,health,education,housing,welfare,defence,environment,tax,pensions,family life,transport","1,2,3,4,5,6,7,8,9,10,11,12,13,14",1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,2,3.5,2,3,3,3,4,1,2,2,2
"crime,health,education,welfare,defence,environment,family life","4,5,6,8,9,10,13",2,2,2,1,1,1,2,1,1,1,2,2,1,2,5,4,4.5,5,5,5,5,4,4,5,4,4
"immigration,crime,health,education,housing,welfare,environment,tax,family life","3,4,5,6,7,8,10,11,13",2,2,1,1,1,1,1,1,2,1,1,2,1,2,4,2,3,1,5,5,5,4,5,5,5,5
"health,education,welfare,environment,family life","5,6,8,10,13",2,2,2,2,1,1,2,1,2,1,2,2,1,2,4,3,3.5,2,5,4,4,3,4,3,3,2
"health,education,welfare,environment,family life","5,6,8,10,13",2,2,2,2,1,1,2,1,2,1,2,2,1,2,1,2,1.5,1,5,5,5,5,5,5,5,4
"crime,health,education,housing,welfare,pensions,family life","4,5,6,7,8,12,13",2,2,2,1,1,1,1,1,2,2,2,1,1,2,4,4,4,3,3,4,5,3,2,3,4,3
"immigration,crime,health,education,welfare,environment,family life","3,4,5,6,8,10,13",2,2,1,1,1,1,2,1,2,1,2,2,1,2,5,4,4.5,2,2,5,4,4,4,2,5,2
"brexit,economy,immigration,crime,health,education,housing,welfare,defence,environment,tax,pensions,family life,transport","1,2,3,4,5,6,7,8,9,10,11,12,13,14",1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,2,3.5,2,5,4,4,2,4,4,4,2
"crime,health,education,environment,family life","4,5,6,10,13",2,2,2,1,1,1,2,2,2,1,2,2,1,2,4,4,4,4,3,4,4,4,4,4,4,3
"immigration,crime,health,education,housing,welfare,environment,family life","3,4,5,6,7,8,10,13",2,2,1,1,1,1,1,1,2,1,2,2,1,2,4,2,3,2,4,2,4,2,4,2,4,2
"health,education,housing,welfare,environment,tax","5,6,7,8,10,11",2,2,2,2,1,1,1,1,2,1,1,2,2,2,5,4,4.5,2,3,4,4,3,4,4,4,3
housing,7,2,2,2,2,2,2,1,2,2,2,2,2,2,2,3,3,3,3,3,4,4,4,3,4,5,4
"crime,education,family life","4,6,13",2,2,2,1,2,1,2,2,2,2,2,2,1,2,4,2,3,2,3,4,3,3,4,4,4,2
"economy,crime,health,education,housing,welfare,environment,family life,transport","2,4,5,6,7,8,10,13,14",2,1,2,1,1,1,1,1,2,1,2,2,1,1,2,2,2,2,5,3,3,3,1,3,3,3
"economy,immigration,health,education,welfare,defence,tax,pensions,family life","2,3,5,6,8,9,11,12,13",2,1,1,2,1,1,2,1,1,2,1,1,1,2,2,2,2,1,4,3,2,2,4,3,4,2
"immigration,crime,health,education,housing,welfare,environment,tax,pensions,family life,transport","3,4,5,6,7,8,10,11,12,13,14",2,2,1,1,1,1,1,1,2,1,1,1,1,1,4,4,4,2,4,2,2,2,1,2,4,2
"economy,crime,health,education,housing,welfare,environment,transport","2,4,5,6,7,8,10,14",2,1,2,1,1,1,1,1,2,1,2,2,2,1,3,3,3,2,4,4,4,2,2,4,4,2
"brexit,economy,immigration,crime,health,education,housing,welfare,defence,environment,tax,pensions,family life,transport","1,2,3,4,5,6,7,8,9,10,11,12,13,14",1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,4,4.5,4,3,4,4,4,3,4,4,4
"health,education,welfare,environment","5,6,8,10",2,2,2,2,1,1,2,1,2,1,2,2,2,2,5,4,4.5,5,5,5,4,4,3,4,4,4
,,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,4,4,4,2,5,4,4,4,4,4,4
,,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,2,2.5,1,1,5,3,4,2,4,4,4
"health,education,housing,environment","5,6,7,10",2,2,2,2,1,1,1,2,2,1,2,2,2,2,2,2,2,2,4,3,2,2,1,2,2,1
"brexit,immigration,crime,health,education,housing,welfare,environment,family life","1,3,4,5,6,7,8,10,13",1,2,1,1,1,1,1,1,2,1,2,2,1,2,2,2,2,1,5,4,4,3,4,4,3,3
,,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,3,3.5,3,4,3,4,3,2,3,3,4
,,2,2,2,2,2,2,2,2,2,2,2,2,2,2,5,4,4.5,5,5,4,4,4,4,4,4,4
"economy,health,education,environment,family life","2,5,6,10,13",2,1,2,2,1,1,2,2,2,1,2,2,1,2,4,4,4,5,5,5,5,5,4,4,5,5
,,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,1.5,1,3,,,,,,,
"immigration,crime,health,environment","3,4,5,10",2,2,1,1,1,2,2,2,2,1,2,2,2,2,1,1,1,1,5,1,3,1,1,1,3,1
,,2,2,2,2,2,2,2,2,2,2,2,2,2,2,4,3,3.5,3,3,,,,,,,
1 Q20 Q20_recode brexit economy immigration crime health education housing welfare defence environment tax pensions family life transport Q22_1 Q22_2 Q22_average Q23_1 Q23_2 Q27_1 Q27_2 Q27_3 Q27_4 Q27_5 Q27_6 Q27_7
2 health,education,environment 5,6,10 2 2 2 2 1 1 2 2 2 1 2 2 2 2 4 4 4 3 5 4 4 4 4 4 4 4
3 economy,immigration,crime,health,education,housing,welfare,defence,environment,family life,transport 2,3,4,5,6,7,8,9,10,13,14 2 1 1 1 1 1 1 1 1 1 2 2 1 1 4 3 3.5 2 5 4 5 5 3 4 4 4
4 crime,health,housing,welfare,environment 4,5,7,8,10 2 2 2 1 1 2 1 1 2 1 2 2 2 2 3 3 3 3 4 4 4 4 4 4 4 4
5 brexit,economy,immigration,crime,health,education,housing,welfare,defence,environment,tax,pensions,family life,transport 1,2,3,4,5,6,7,8,9,10,11,12,13,14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 2 3 4 5 4 3 2 3 2 2 2
6 health,education,housing,welfare,environment,family life 5,6,7,8,10,13 2 2 2 2 1 1 1 1 2 1 2 2 1 2 4 2 3 1 4 5 4 2 5 4 3 3
7 brexit,economy,immigration,crime,health,education,housing,welfare,environment,tax,pensions,family life 1,2,3,4,5,6,7,8,10,11,12,13 1 1 1 1 1 1 1 1 2 1 1 1 1 2 4 3 3.5 3 3 4 4 2 3 2 3 2
8 crime,housing,environment 4,7,10 2 2 2 1 2 2 1 2 2 1 2 2 2 2 5 5 5 4 5 4 4 4 4 4 4 4
9 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 5 5 1 5 5 5 5 5 5 5
10 economy,crime,health,welfare,environment 2,4,5,8,10 2 1 2 1 1 2 2 1 2 1 2 2 2 2 5 5 5 5 5 5 5 5 5 5 5 4
11 crime,health,education,housing,welfare,environment,family life 4,5,6,7,8,10,13 2 2 2 1 1 1 1 1 2 1 2 2 1 2 4 4 4 3 5 4 4 4 4 4 4 4
12 immigration,crime,health,education,housing,welfare,environment,family life 3,4,5,6,7,8,10,13 2 2 1 1 1 1 1 1 2 1 2 2 1 2 2 2 2 2 4 5 4 2 3 2 3 2
13 health,education,environment 5,6,10 2 2 2 2 1 1 2 2 2 1 2 2 2 2 2 2 2 4 4 3 4 2 4 4 4 3
14 immigration,crime,health,housing,welfare,family life 3,4,5,7,8,13 2 2 1 1 1 2 1 1 2 2 2 2 1 2 4 4 4 3 4 4 4 4 4 4 5 4
15 economy,immigration,health,education,housing,environment,pensions 2,3,5,6,7,10,12 2 1 1 2 1 1 1 2 2 1 2 1 2 2 3 3 3 2 4 3 3 3 4 4 4 5
16 brexit,economy,immigration,crime,health,education,housing,welfare,environment,family life 1,2,3,4,5,6,7,8,10,13 1 1 1 1 1 1 1 1 2 1 2 2 1 2 5 4 4.5 2 4 4 4 2 5 3 4 3
17 immigration,crime,health,education,welfare,family life 3,4,5,6,8,13 2 2 1 1 1 1 2 1 2 2 2 2 1 2 4 2 3 2 3 4 4 3 2 3 3 3
18 health,education,housing,welfare,environment,pensions,family life,transport 5,6,7,8,10,12,13,14 2 2 2 2 1 1 1 1 2 1 2 1 1 1 5 5 5 2 5 5 5 2 5 5 5 2
19 economy,education,environment 2,6,10 2 1 2 2 2 1 2 2 2 1 2 2 2 2 4 4 4 2 4 4 4 4 3 4 4 4
20 health,education,welfare,environment 5,6,8,10 2 2 2 2 1 1 2 1 2 1 2 2 2 2 4 2 3 2 3 2 2 2 1 2 3 1
21 brexit,economy,immigration,health,education,housing,welfare,environment 1,2,3,5,6,7,8,10 1 1 1 2 1 1 1 1 2 1 2 2 2 2 4 2 3 1 5 4 4 4 4 4 2 2
22 brexit,economy,immigration,crime,health,education,housing,welfare,defence,environment,tax,pensions,family life,transport 1,2,3,4,5,6,7,8,9,10,11,12,13,14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 4 4.5 4 3 5 5 4 5 5 5 5
23 brexit,economy,immigration,crime,health,education,housing,welfare,defence,environment,tax,pensions,family life,transport 1,2,3,4,5,6,7,8,9,10,11,12,13,14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 5 5 3 4 4 4 5 5 4 5
24 brexit,economy,immigration,crime,health,education,housing,welfare,defence,environment,tax,pensions,family life,transport 1,2,3,4,5,6,7,8,9,10,11,12,13,14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 4 4.5 4 4 4 5 3 3 4 3 3
25 brexit,economy,immigration,crime,health,education,housing,welfare,defence,environment,tax,pensions,family life,transport 1,2,3,4,5,6,7,8,9,10,11,12,13,14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 4 4.5 2 3 5 5 4 5 5 5 4
26 economy,immigration,health,education,environment 2,3,5,6,10 2 1 1 2 1 1 2 2 2 1 2 2 2 2 5 4 4.5 2 3 5 5 4 4 5 5 4
27 economy,health,education,housing,environment,family life 2,5,6,7,10,13 2 1 2 2 1 1 1 2 2 1 2 2 1 2 5 5 5 4 4 5 5 5 5 5 5 5
28 immigration,crime,health,education,housing,environment,family life 3,4,5,6,7,10,13 2 2 1 1 1 1 1 2 2 1 2 2 1 2 4 2 3 2 5 5 5 4 2 4 2 2
29 health,education,housing,welfare,environment,family life 5,6,7,8,10,13 2 2 2 2 1 1 1 1 2 1 2 2 1 2 4 4 4 2 4 4 4 2 4 4 4 3
30 crime,health,education,welfare,environment,family life 4,5,6,8,10,13 2 2 2 1 1 1 2 1 2 1 2 2 1 2 4 2 3 2 1 5 5 2 4 4 4 4
31 immigration,crime,health,education,welfare,environment,tax,transport 3,4,5,6,8,10,11,14 2 2 1 1 1 1 2 1 2 1 1 2 2 1 4 2 3 4 4 5 5 4 4 2 4 2
32 crime,health,education,housing,welfare,family life 4,5,6,7,8,13 2 2 2 1 1 1 1 1 2 2 2 2 1 2 4 4 4 2 2 4 4 4 1 2 2 2
33 brexit,economy,immigration,crime,health,education,housing,welfare,defence,environment,tax,pensions,family life,transport 1,2,3,4,5,6,7,8,9,10,11,12,13,14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4 3 3.5 3 4 4 5 3 4 5 5 3
34 economy,immigration,crime,health,education,housing,welfare,environment,family life 2,3,4,5,6,7,8,10,13 2 1 1 1 1 1 1 1 2 1 2 2 1 2 5 4 4.5 4 5 5 5 5 4 4 4 4
35 immigration,health,education,housing,welfare,environment 3,5,6,7,8,10 2 2 1 2 1 1 1 1 2 1 2 2 2 2 4 4 4 4 4 4 5 4 5 5 5 4
36 immigration,crime,health,education,housing,welfare,defence,environment,tax,pensions,family life,transport 3,4,5,6,7,8,9,10,11,12,13,14 2 2 1 1 1 1 1 1 1 1 1 1 1 1 4 4 4 2 3 4 4 3 5 4 4 4
37 immigration,education,family life 3,6,13 2 2 1 2 2 1 2 2 2 2 2 2 1 2 4 3 3.5 4 3 4 2 4 1 2 2 2
38 economy,immigration,health,education,environment,family life 2,3,5,6,10,13 2 1 1 2 1 1 2 2 2 1 2 2 1 2 4 3 3.5 4 5 5 5 2 4 4 5 2
39 brexit,economy,immigration,crime,health,education,housing,environment,family life 1,2,3,4,5,6,7,10,13 1 1 1 1 1 1 1 2 2 1 2 2 1 2 5 5 5 4 4 3 3 4 4 4 4 4
40 brexit,economy,immigration,crime,health,education,housing,welfare,defence,environment,tax,pensions,family life,transport 1,2,3,4,5,6,7,8,9,10,11,12,13,14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 5 4 2 3 4 3 2
41 immigration,health,education,welfare,environment,tax 3,5,6,8,10,11 2 2 1 2 1 1 2 1 2 1 1 2 2 2 5 4 4.5 4 3 4 5 5 3 2 4 4
42 immigration,health,education,housing,environment,family life 3,5,6,7,10,13 2 2 1 2 1 1 1 2 2 1 2 2 1 2 4 4 4 4 5 5 5 4 4 5 5 4
43 health,education,welfare,environment,family life 5,6,8,10,13 2 2 2 2 1 1 2 1 2 1 2 2 1 2 3 3 3 3 4 3 3 3 3 3 3 3
44 economy,immigration,crime,health,education,housing,welfare,environment,tax,pensions,family life,transport 2,3,4,5,6,7,8,10,11,12,13,14 2 1 1 1 1 1 1 1 2 1 1 1 1 1 4 3 3.5 4 5 4 5 4 4 4 4 4
45 health,education,housing,environment,family life 5,6,7,10,13 2 2 2 2 1 1 1 2 2 1 2 2 1 2 4 4 4 3 3 4 4 3 3 4 4 3
46 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 5 4 3
47 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 4 4.5 4 3 5 5 5 5 5 5 4
48 immigration,crime,health,education,housing,welfare,environment,family life,transport 3,4,5,6,7,8,10,13,14 2 2 1 1 1 1 1 1 2 1 2 2 1 1 1 1 1 1 5 5 5 2 2 4 4 2
49 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 2 3 1 3
50 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 2 4
51 immigration,health,education,housing,welfare,environment,family life 3,5,6,7,8,10,13 2 2 1 2 1 1 1 1 2 1 2 2 1 2 4 4 4 3 5 4 4 4 3 4 3 3
52 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3
53 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 3 5 5 5 5 5 5 5 5
54 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 4 4.5 2 3 4 4 4 3 4 4 4
55 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2.5 3 5 5 4 4 3 4 3 3
56 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 2 2 4 4 3 4 4 4 4
57 economy,health,education,housing,environment 2,5,6,7,10 2 1 2 2 1 1 1 2 2 1 2 2 2 2 4 4 4 4 5 4 5 5 5 4 5 5
58 brexit,economy,immigration,crime,health,education,housing,welfare,defence,environment,tax,pensions,family life,transport 1,2,3,4,5,6,7,8,9,10,11,12,13,14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 2 3.5 2 3 3 3 4 1 2 2 2
59 crime,health,education,welfare,defence,environment,family life 4,5,6,8,9,10,13 2 2 2 1 1 1 2 1 1 1 2 2 1 2 5 4 4.5 5 5 5 5 4 4 5 4 4
60 immigration,crime,health,education,housing,welfare,environment,tax,family life 3,4,5,6,7,8,10,11,13 2 2 1 1 1 1 1 1 2 1 1 2 1 2 4 2 3 1 5 5 5 4 5 5 5 5
61 health,education,welfare,environment,family life 5,6,8,10,13 2 2 2 2 1 1 2 1 2 1 2 2 1 2 4 3 3.5 2 5 4 4 3 4 3 3 2
62 health,education,welfare,environment,family life 5,6,8,10,13 2 2 2 2 1 1 2 1 2 1 2 2 1 2 1 2 1.5 1 5 5 5 5 5 5 5 4
63 crime,health,education,housing,welfare,pensions,family life 4,5,6,7,8,12,13 2 2 2 1 1 1 1 1 2 2 2 1 1 2 4 4 4 3 3 4 5 3 2 3 4 3
64 immigration,crime,health,education,welfare,environment,family life 3,4,5,6,8,10,13 2 2 1 1 1 1 2 1 2 1 2 2 1 2 5 4 4.5 2 2 5 4 4 4 2 5 2
65 brexit,economy,immigration,crime,health,education,housing,welfare,defence,environment,tax,pensions,family life,transport 1,2,3,4,5,6,7,8,9,10,11,12,13,14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 2 3.5 2 5 4 4 2 4 4 4 2
66 crime,health,education,environment,family life 4,5,6,10,13 2 2 2 1 1 1 2 2 2 1 2 2 1 2 4 4 4 4 3 4 4 4 4 4 4 3
67 immigration,crime,health,education,housing,welfare,environment,family life 3,4,5,6,7,8,10,13 2 2 1 1 1 1 1 1 2 1 2 2 1 2 4 2 3 2 4 2 4 2 4 2 4 2
68 health,education,housing,welfare,environment,tax 5,6,7,8,10,11 2 2 2 2 1 1 1 1 2 1 1 2 2 2 5 4 4.5 2 3 4 4 3 4 4 4 3
69 housing 7 2 2 2 2 2 2 1 2 2 2 2 2 2 2 3 3 3 3 3 4 4 4 3 4 5 4
70 crime,education,family life 4,6,13 2 2 2 1 2 1 2 2 2 2 2 2 1 2 4 2 3 2 3 4 3 3 4 4 4 2
71 economy,crime,health,education,housing,welfare,environment,family life,transport 2,4,5,6,7,8,10,13,14 2 1 2 1 1 1 1 1 2 1 2 2 1 1 2 2 2 2 5 3 3 3 1 3 3 3
72 economy,immigration,health,education,welfare,defence,tax,pensions,family life 2,3,5,6,8,9,11,12,13 2 1 1 2 1 1 2 1 1 2 1 1 1 2 2 2 2 1 4 3 2 2 4 3 4 2
73 immigration,crime,health,education,housing,welfare,environment,tax,pensions,family life,transport 3,4,5,6,7,8,10,11,12,13,14 2 2 1 1 1 1 1 1 2 1 1 1 1 1 4 4 4 2 4 2 2 2 1 2 4 2
74 economy,crime,health,education,housing,welfare,environment,transport 2,4,5,6,7,8,10,14 2 1 2 1 1 1 1 1 2 1 2 2 2 1 3 3 3 2 4 4 4 2 2 4 4 2
75 brexit,economy,immigration,crime,health,education,housing,welfare,defence,environment,tax,pensions,family life,transport 1,2,3,4,5,6,7,8,9,10,11,12,13,14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 4 4.5 4 3 4 4 4 3 4 4 4
76 health,education,welfare,environment 5,6,8,10 2 2 2 2 1 1 2 1 2 1 2 2 2 2 5 4 4.5 5 5 5 4 4 3 4 4 4
77 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 4 4 4 2 5 4 4 4 4 4 4
78 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2.5 1 1 5 3 4 2 4 4 4
79 health,education,housing,environment 5,6,7,10 2 2 2 2 1 1 1 2 2 1 2 2 2 2 2 2 2 2 4 3 2 2 1 2 2 1
80 brexit,immigration,crime,health,education,housing,welfare,environment,family life 1,3,4,5,6,7,8,10,13 1 2 1 1 1 1 1 1 2 1 2 2 1 2 2 2 2 1 5 4 4 3 4 4 3 3
81 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 3 3.5 3 4 3 4 3 2 3 3 4
82 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 4 4.5 5 5 4 4 4 4 4 4 4
83 economy,health,education,environment,family life 2,5,6,10,13 2 1 2 2 1 1 2 2 2 1 2 2 1 2 4 4 4 5 5 5 5 5 4 4 5 5
84 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1.5 1 3
85 immigration,crime,health,environment 3,4,5,10 2 2 1 1 1 2 2 2 2 1 2 2 2 2 1 1 1 1 5 1 3 1 1 1 3 1
86 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 3 3.5 3 3