2021-10-13 19:37:21 +00:00
|
|
|
---
|
|
|
|
title: "Connect Project"
|
|
|
|
output: html_document
|
|
|
|
---
|
|
|
|
|
|
|
|
```{r setup, include=FALSE}
|
|
|
|
knitr::opts_chunk$set(echo = TRUE)
|
|
|
|
```
|
|
|
|
|
|
|
|
Note that the `echo = FALSE` parameter was added to the code chunk to prevent printing of the R code that generated the plot.
|
|
|
|
|
|
|
|
### To Do List
|
|
|
|
|
2021-10-20 18:34:54 +00:00
|
|
|
## Upload Data
|
|
|
|
```{r Data Upload}
|
2021-10-27 11:52:31 +00:00
|
|
|
connect_data = read.csv("./data/connectDATA.csv")
|
2021-10-20 18:34:54 +00:00
|
|
|
```
|
|
|
|
|
2021-10-13 19:37:21 +00:00
|
|
|
## Summary of Data
|
|
|
|
Data summary/visualisation with subsetting:
|
|
|
|
- RH: display simple summary of data (bar/pie chart) to Q25/26, Q3
|
|
|
|
|
2021-10-20 18:34:54 +00:00
|
|
|
```{r Frequencies}
|
|
|
|
#Frequencies#
|
2021-10-13 19:37:21 +00:00
|
|
|
|
2021-10-20 18:34:54 +00:00
|
|
|
Q25_frequencies = table(connect_data$Q25)
|
|
|
|
Q25_frequencies
|
|
|
|
Q26_freq = table(connect_data$Q26)
|
|
|
|
Q26_freq
|
|
|
|
Q3_freq = table(connect_data$Q3)
|
|
|
|
Q3_freq
|
|
|
|
|
|
|
|
#test3 = as.factor(connect_data$Q3, levels = c(1, 2, 3, 4, 5), labels = c("Worldviews", "Religion", "Theology", "Ethics", "Philosophy"))
|
|
|
|
```
|
|
|
|
|
2021-10-13 19:37:21 +00:00
|
|
|
```{r Q25 bar/pie}
|
2021-10-20 18:34:54 +00:00
|
|
|
pie(Q25_frequencies, labels = c("Maybe", "No", "Yes"))
|
|
|
|
|
2021-10-13 19:37:21 +00:00
|
|
|
```
|
|
|
|
|
2021-10-20 18:34:54 +00:00
|
|
|
pie(Q25_frequencies, labels = c("Maybe", "No", "Yes"))
|
|
|
|
# rough draft of piechart
|
|
|
|
|
2021-10-13 19:37:21 +00:00
|
|
|
```{r Q26 bar/pie}
|
2021-10-25 15:13:22 +00:00
|
|
|
|
2021-10-27 11:52:31 +00:00
|
|
|
Q26_data <- read.csv("./data/Q26_data.csv")
|
2021-10-25 15:13:22 +00:00
|
|
|
|
|
|
|
Q26_freq_data <- data.frame(c("Other Priorities", "Lack Subject Knowledge", "Lack Confidence", "Current Syllabus", "Pupil Disinterest", "Department Head", "Available Work Schemes", "Unavailable Resources", "Uncertain of Pedagogical Approach"), c(table(Q26_data[,2]) [names(table(Q26_data[,2])) == "TRUE"],
|
|
|
|
table(Q26_data[,3]) [names(table(Q26_data[,3])) == "TRUE"],
|
|
|
|
table(Q26_data[,4]) [names(table(Q26_data[,4])) == "TRUE"],
|
|
|
|
table(Q26_data[,5]) [names(table(Q26_data[,5])) == "TRUE"],
|
|
|
|
table(Q26_data[,6]) [names(table(Q26_data[,6])) == "TRUE"],
|
|
|
|
table(Q26_data[,7]) [names(table(Q26_data[,7])) == "TRUE"],
|
|
|
|
table(Q26_data[,8]) [names(table(Q26_data[,8])) == "TRUE"],
|
|
|
|
table(Q26_data[,9]) [names(table(Q26_data[,9])) == "TRUE"],
|
|
|
|
table(Q26_data[,10]) [names(table(Q26_data[,10])) == "TRUE"]))
|
|
|
|
|
|
|
|
head(Q26_freq_data)
|
|
|
|
names(Q26_freq_data)[1] <- "Reasons"
|
|
|
|
names(Q26_freq_data)[2] <- "Frequency"
|
|
|
|
head(Q26_freq_data)
|
|
|
|
pie(Q26_freq_data$Frequency, labels = c("Other Priorities", "Lack Subject Knowledge", "Lack Confidence", "Current Syllabus", "Pupil Disinterest", "Department Head", "Available Work Schemes", "Unavailable Resources", "Uncertain of Pedagogical Approach"))
|
|
|
|
|
2021-10-13 19:37:21 +00:00
|
|
|
```
|
|
|
|
|
2021-10-20 18:34:54 +00:00
|
|
|
pie(Q26_freq)
|
|
|
|
#very messy as a pie chart - split by type? Or is it important to see crossover
|
|
|
|
|
2021-10-13 19:37:21 +00:00
|
|
|
```{r Q3 bar/pie}
|
2021-10-22 13:24:57 +00:00
|
|
|
|
2021-10-27 11:52:31 +00:00
|
|
|
Q3_data <- read.csv("./data/Q3.csv")
|
2021-10-25 15:13:22 +00:00
|
|
|
|
|
|
|
#head(Q3_data)
|
|
|
|
#table(Q3_data [,3:7])
|
|
|
|
#pie(table(Q3_data [,3:7]))
|
|
|
|
|
|
|
|
Q3_data2 <- Q3_data[,3:7]
|
|
|
|
#head(Q3_data2)
|
|
|
|
#table(Q3_data2)
|
|
|
|
#table(Q3_data2[,1])
|
|
|
|
|
|
|
|
### want to take only the count of "True" (1) in each column. Then pie chart of the frequencies
|
|
|
|
|
|
|
|
#Q3_data3 <- read.csv("~/Documents/Github/re_connect_survey/data/Q3 copydata.csv")
|
|
|
|
|
|
|
|
#table(Q3_data3)
|
|
|
|
#count(Q3_data3, 1)
|
|
|
|
#table(Q3_data3) [names(table(Q3_data3)) == 1]
|
|
|
|
#table(Q3_data3)
|
|
|
|
|
|
|
|
table(Q3_data2[,1]) [names(table(Q3_data2[,1])) == "TRUE"]
|
|
|
|
|
|
|
|
test2 <- data.frame(c("Worldviews", "Religion", "Theology", "Ethics", "Philosophy"), c(table(Q3_data2[,1]) [names(table(Q3_data2[,1])) == "TRUE"],
|
|
|
|
table(Q3_data2[,2]) [names(table(Q3_data2[,2])) == "TRUE"],
|
|
|
|
table(Q3_data2[,3]) [names(table(Q3_data2[,3])) == "TRUE"],
|
|
|
|
table(Q3_data2[,4]) [names(table(Q3_data2[,4])) == "TRUE"],
|
|
|
|
table(Q3_data2[,5]) [names(table(Q3_data2[,5])) == "TRUE"]))
|
|
|
|
head(test2)
|
|
|
|
names(test2)[1] <- "Subject"
|
|
|
|
names(test2)[2] <- "Frequency"
|
|
|
|
head(test2)
|
|
|
|
pie(test2$Frequency, labels = c("Worldviews", "Religion", "Theology", "Ethics", "Philosophy"))
|
|
|
|
|
2021-10-22 13:24:57 +00:00
|
|
|
|
2021-10-13 19:37:21 +00:00
|
|
|
```
|
|
|
|
|
2021-10-22 13:24:57 +00:00
|
|
|
|
2021-10-20 18:34:54 +00:00
|
|
|
pie(Q3_freq)
|
|
|
|
#also not optimal as pie...perhaps bar
|
|
|
|
|
2021-10-25 15:13:22 +00:00
|
|
|
#sum(Q3_data2)
|
|
|
|
|
|
|
|
Q3_1factor = as.factor(Q3_data2$Religion)
|
|
|
|
table(Q3_1factor)
|
|
|
|
#count(Q3_1factor, "TRUE")
|
2021-10-20 18:34:54 +00:00
|
|
|
|
2021-10-25 15:13:22 +00:00
|
|
|
#test = replace(Q3_1factor, "TRUE", 1)
|
|
|
|
#test
|
|
|
|
#Q3_1factor
|
2021-10-20 18:34:54 +00:00
|
|
|
|
2021-10-13 19:37:21 +00:00
|
|
|
- RH: display summaries of responses to key questions for Q22 (syllabus evaluation), Q23, Q24, Q25, Q26, Q27, with subsetting by:
|
|
|
|
- Q8 (school type)
|
|
|
|
- Q9 (school size)
|
|
|
|
- Q10 (school location)
|
|
|
|
- Q1 (grade level) + Q35 (teaching role) + +Q5 (teaching proportion) Q2 (tenure) + and Q3 (subjects taught), + Q6/Q7 (management)
|
|
|
|
- Q12-14 (school's official religion) / Q15-16 (school's informal religion)
|
|
|
|
- Q21 (respondent personal religious background)
|
|
|
|
- Q4 (teacher's degree subject)
|
|
|
|
- Q18 (respondent gender)
|
|
|
|
- Q19 (respondent ethnic self-desc)
|
|
|
|
|
|
|
|
```{r Plots}
|
|
|
|
# Q22
|
|
|
|
|
|
|
|
# Q23
|
|
|
|
|
|
|
|
# Q24
|
|
|
|
|
|
|
|
# Q25
|
|
|
|
|
|
|
|
# Q26
|
|
|
|
|
|
|
|
# Q27
|
|
|
|
```
|
|
|
|
|
2021-10-20 18:34:54 +00:00
|
|
|
## Correlation testing:
|
|
|
|
- RH: test for correlation between "social issue" box ticked on Q20 and responses to Q22, Q23, Q27
|
|
|
|
|
|
|
|
- Make Q20 a factor with 14 levels
|
|
|
|
- Collapse 2 Q22 columns into one mean for analyses
|
|
|
|
- Analyse 1 way anova Q20 (14 levels) by Q22; Q23[1-2]; Q27[1-7]
|
|
|
|
|
|
|
|
|
|
|
|
```{r Correlation 1}
|
|
|
|
|
|
|
|
```
|
2021-10-25 15:13:22 +00:00
|
|
|
- RH: test for correlation between responses to religion questions: Q12-14, Q15-16 and Q21 and responses to Q22, Q23, Q27, [Q24, Q25, Q30]
|