mapping_environmental_action/README.md
Jeremy Kidwell 976bd62a44 minor fixes
2017-07-17 15:39:59 +01:00

34 lines
4.1 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Mapping Environmental Action
## A Welcome For the Uninitiated ##
If you're new to github and reproducible research, welcome! It's nice to have you here. Github is ordinarily a place where software developers working on open source software projects deposit their code as they write software collaboratively. However, in recent years a number of scholarly researchers, especially people working on research which involves a digital component (including me!) have begun to deposit their papers in these same software repositories. The idea here is that you can download all of the source-code and data used in this paper alongside the actual text, run it yourself and ["reproduce" the results](http://kbroman.org/steps2rr/). This can serve as a useful safeguard, a layer of research transparency, and a cool teaching tool for other persons interested in doing similar work.
Eschewing proprietary, expensive and unreliable software like Microsoft Word, I write in a combination of two languages: (1) [Markdown](https://en.wikipedia.org/wiki/Markdown) which is intended to be as close as possible to plain text while still allowing for things like boldfaced type, headings and footnotes; and (2) a programming language called [R](https://en.wikipedia.org/wiki/R_(programming_language)) to do all the data analysis. R is an object oriented language which was specifically designed for statistical analysis. It's also great fun to tinker with. As you look through this paper, you'll see that R code is integrated into the text of the document. This is indicated by a series of three backticks (```).
To read a bit more on these things and start on your own path towards plain text reproducible research, I highly recommend:
- Karl Broman's guide, "[Initial Steps Toward Reproducible Research](http://kbroman.org/steps2rr/)"
- Kieran Healy's guide, "[The Plain Persons Guide to Plain Text Social Science](http://kieranhealy.org/files/papers/plain-person-text.pdf)"
The other advantage of putting this paper here is that readers and reviewers can suggest changes and point out errors in the document. To do this, I recommend that you create a github issue by clicking on the green "New issue" button [here](https://github.com/kidwellj/mapping_environmental_action/issues). If you must, you can also send me emails. More stuff about me [can be found here](http://jeremykidwell.info).
To skip ahead and start reading the actual paper, click on [`mapping_draft.rmd`](https://github.com/kidwellj/mapping_environmental_action/blob/master/mapping_draft.Rmd) above.
Now for...
## The quick technical version ##
This repository contains the code and writing towards a (working draft of a) scholarly paper which presents my analysis of the geospatial footprint of eco-groups in the UK. This is based on research I have been conducting since 2013 and which is ongoing. The paper is written in R Markdown and for the most part, I'm using the conventions outlined by Kieran Healy [here](https://kieranhealy.org/blog/archives/2014/01/23/plain-text/) and is best viewed (I think) in [R Studio](https://www.rstudio.com) though it will be reasonably comprehensible to anyone using a Markdown editor. If I'm not working in RStudio, I'm probably in Sublime text, FYI. Co-authors and collaborators take note, generally, I use [Hadley Wickham's venerable R Style Guide](http://adv-r.had.co.nz/Style.html).
I'd be extremely happy if someone found errors, or imagined a more efficient means of analysis and either reported them as an issue on this github repository or sent me an email.
The actual article is in `mapping_draft.Rmd`.
Paths in this folder are used mostly for R processing. Towards this end folders have the following significance:
- `data` contains datasets used for analysis.
- `derived_data` contains files which represent modified forms of files in the above path.
- `figures` contains images and visualisations (graphic files) which are generated by R for the final form of the document.
- `cache` isn't included in github but is usually used for working files
Note: none of the contents of the above are included in the github repository unless they are unavailable from an external repository.