mirror of
https://github.com/kidwellj/mapping_environmental_action.git
synced 2025-01-08 23:12:19 +00:00
tidied up use of crs, early work on inset maps
This commit is contained in:
parent
a25025e65c
commit
cd72f06380
|
@ -64,7 +64,7 @@ require(rgeos) # deprecated by sf()
|
|||
require(maptools)
|
||||
require(ggplot2)
|
||||
require(tmap) # using as an alternative to base r graphics and ggplot for geospatial plots
|
||||
# require(ggmap)
|
||||
require(grid) # using for inset maps on tmap
|
||||
require(broom) # required for tidying SPDF to data.frame for ggplot2
|
||||
require(tidyr) # using for grouped bar plot
|
||||
require(plyr)
|
||||
|
@ -93,16 +93,9 @@ if (dir.exists("derivedData") == FALSE) {
|
|||
# it is falling out of use in many cases, so will be defaulting to WGS84 in future
|
||||
# data-sets and papers.
|
||||
|
||||
# TODO: make canonical CRS definitions and use consistently; remove proj4string(admin_lev1) and other similar instances below.
|
||||
wgs84 <- "+proj=longlat +datum=WGS84"
|
||||
bng_old <- "+proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717 +x_0=400000 +y_0=-100000 +datum=OSGB36 +units=m +no_defs +ellps=airy +towgs84=446.448,-125.157,542.060,0.1502,0.2470,0.8421,-20.4894"
|
||||
bng <- "+proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717 +x_0=400000 +y_0=-100000 +ellps=airy +datum=OSGB36 +units=m +no_defs"
|
||||
osgb36 <- "+proj=tmerc +lat_0=49 +lon_0=-2 +k=0.9996012717 +x_0=400000 +y_0=-100000 +datum=OSGB36 +units=m +no_defs +ellps=airy +towgs84=446.448,-125.157,542.060,0.1502,0.2470,0.8421,-20.4894"
|
||||
|
||||
# Note, shifting to EPSG codes given the usage of this approach with sf()
|
||||
bng_epsg <- CRS("+init=epsg:27700")
|
||||
osgb36 <- CRS("+init=epsg:7405")
|
||||
wgs84_epsg <- CRS("+init=epsg:4326")
|
||||
# Working with EPSG codes for spatialfeature CRS given the usage of this approach with sf()
|
||||
bng <- CRS("+init=epsg:27700")
|
||||
wgs84 <- CRS("+init=epsg:4326")
|
||||
|
||||
# Configure fonts for plots below
|
||||
|
||||
|
@ -123,10 +116,11 @@ Until recently, environmentalism has been treated by governments and environment
|
|||
# ...turn it into a SpatialPointsDataFrame---------------------
|
||||
# TODO: upload ECS-GIS-Locations_3.0.csv to zenodo repository, i.e.
|
||||
ecs <- read.csv("data/ECS-GIS-Locations_3.0.csv", comment.char="#")
|
||||
ecs_sf <- st_as_sf(ecs, coords = c("X", "Y"), crs=27700)
|
||||
# unnecessary with advent of sf (above)
|
||||
coordinates(ecs) <- c("X", "Y")
|
||||
proj4string(ecs) = CRS(bng)
|
||||
# Modified to use EPSG code directly 27 Feb 2019
|
||||
proj4string(ecs) = CRS("+init=epsg:27700")
|
||||
ecs_sf <- st_as_sf(ecs, coords = c("X", "Y"), crs=27700)
|
||||
```
|
||||
|
||||
There are `r length(ecs)` eco-congregations in Scotland. By some measurements, particularly in terms of individual sites and possibly also with regards to volunteers, this makes Eco-Congregation Scotland one of the largest environmental third-sector groups in Scotland.[^159141043]
|
||||
|
@ -179,8 +173,8 @@ download.file("https://borders.ukdataservice.ac.uk/ukborders/easy_download/prebu
|
|||
destfile = "data/Scotland_ca_2010.zip")
|
||||
unzip("data/Scotland_ca_2010.zip", exdir = "data")
|
||||
}
|
||||
admin_lev1 <- readOGR("./data", "scotland_ca_2010")
|
||||
admin_lev1_sf <- st_read("data/scotland_ca_2010.shp")
|
||||
admin_lev1 <- readOGR("./data", "scotland_ca_2010")
|
||||
admin_lev1_sf <- st_read("data/scotland_ca_2010.shp") %>% st_transform(27700)
|
||||
|
||||
# read in polygon for intermediate admin boundary layers
|
||||
if (file.exists("data/scotland_parlcon_2011.shp") == FALSE) {
|
||||
|
@ -189,14 +183,33 @@ download.file("http://census.edina.ac.uk/ukborders/easy_download/prebuilt/shape/
|
|||
unzip("data/Scotland_parlcon_2011.zip", exdir = "data")
|
||||
}
|
||||
admin_lev2 <- readOGR("./data", "scotland_parlcon_2011")
|
||||
admin_lev2_sf <- st_read("data/scotland_parlcon_2011.shp")
|
||||
admin_lev2_sf <- st_read("data/scotland_parlcon_2011.shp") %>% st_transform(27700)
|
||||
|
||||
# Set CRS using epsg code on spdf for symmetry with datasets below
|
||||
proj4string(admin_lev1) <- CRS("+init=epsg:27700")
|
||||
proj4string(admin_lev2) <- CRS("+init=epsg:27700")
|
||||
|
||||
# Generate new sf shape using bounding box for central belt for map insets below
|
||||
# Note: coordinates use BNG as CRS (EPSG: 27700)
|
||||
|
||||
scotland <- st_bbox(c(xmin = 5513.0000, xmax = 470332.0000,
|
||||
ymin = 530249.0000, ymax = 1220301.5000),
|
||||
crs = st_crs("+init=epsg:27700")) %>%
|
||||
st_as_sfc()
|
||||
|
||||
centralbelt_region <- st_bbox(c(xmin = 224479.2, xmax = 642963.5,
|
||||
ymin = 347475.0, ymax = 711014.5),
|
||||
crs = st_crs("+init=epsg:27700")) %>%
|
||||
st_as_sfc()
|
||||
st_crs(centralbelt_region) <- st_transform(centralbelt_region, 27700)
|
||||
|
||||
```
|
||||
|
||||
```{r import_groups_data, message=FALSE, warning=FALSE, include=FALSE}
|
||||
# read in Transition Towns data and turn it into a SpatialPointsDataFrame
|
||||
transition_wgs <- read.csv(text=getURL("https://zenodo.org/record/165519/files/SCCAN_1.4.csv"))
|
||||
coordinates(transition_wgs) <- c("X", "Y")
|
||||
proj4string(transition_wgs) <- CRS(wgs84)
|
||||
proj4string(transition_wgs) <- CRS("+init=epsg:4326")
|
||||
transition <- spTransform(transition_wgs, bng)
|
||||
transition_sf <- st_as_sf(transition, coords = c("X", "Y"), crs=27700)
|
||||
|
||||
|
@ -215,20 +228,28 @@ transition_sf <- st_as_sf(transition, coords = c("X", "Y"), crs=27700)
|
|||
pow_pointX <- read.csv("./data/poi_2015_12_scot06340459.csv", sep="|")
|
||||
coordinates(pow_pointX) <- c("feature_easting", "feature_northing")
|
||||
# TODO: need to alter to draw from wgs84 or bng defined in preamble above
|
||||
proj4string(pow_pointX) <- proj4string(admin_lev1)
|
||||
proj4string(pow_pointX) <- CRS("+init=epsg:27700")
|
||||
pow_pointX_sf <- st_as_sf(pow_pointX, coords = c("X", "Y"), crs=27700)
|
||||
|
||||
# read in Scottish Community Dev. trust data and turn it into a SpatialPointsDataFrame
|
||||
dtas <- read.csv("data/community-dev-trusts-2.6.csv")
|
||||
coordinates(dtas) <- c("X", "Y")
|
||||
proj4string(dtas) <- proj4string(admin_lev1)
|
||||
proj4string(dtas) <- CRS("+init=epsg:27700")
|
||||
dtas_sf <- st_as_sf(dtas, coords = c("X", "Y"), crs=27700)
|
||||
|
||||
# read in permaculture data and turn it into a SpatialPointsDataFrame
|
||||
permaculture <- read.csv("data/permaculture_scot-0.8.csv")
|
||||
coordinates(permaculture) <- c("X", "Y")
|
||||
proj4string(permaculture) <- proj4string(admin_lev1)
|
||||
proj4string(permaculture) <- CRS("+init=epsg:27700")
|
||||
permaculture_sf <- st_as_sf(permaculture, coords = c("X", "Y"), crs=27700)
|
||||
|
||||
# subset point datasets for inset maps below
|
||||
ecs_sf_centralbelt <- st_intersection(ecs_sf, centralbelt_region)
|
||||
dtas_sf_centralbelt <- st_intersection(dtas_sf, centralbelt_region)
|
||||
transition_sf_centralbelt <- st_intersection(transition_sf, centralbelt_region)
|
||||
pow_sf_centralbelt <- st_intersection(pow_pointX_sf, centralbelt_region)
|
||||
permaculture_sf_centralbelt <- st_intersection(permaculture_sf, centralbelt_region)
|
||||
|
||||
```
|
||||
|
||||
```{r process_admin_data}
|
||||
|
@ -240,8 +261,9 @@ permaculture_sf <- st_as_sf(permaculture, coords = c("X", "Y"), crs=27700)
|
|||
# calculate count of ECS for fields in admin and provide percentages
|
||||
# JK Note: need to convert from poly.counts, which uses sp() to st_covers() which uses sf() - cf. https://stackoverflow.com/questions/45314094/equivalent-of-poly-counts-to-count-lat-long-pairs-falling-inside-of-polygons-w#45337050
|
||||
|
||||
ecs <- spTransform(ecs, proj4string(admin_lev1))
|
||||
transition <- spTransform(transition, proj4string(admin_lev1))
|
||||
# Commenting out 27 Feb 2019 in light of revisions to CRS handling above
|
||||
# ecs <- spTransform(ecs, proj4string(admin_lev1))
|
||||
# transition <- spTransform(transition, proj4string(admin_lev1))
|
||||
|
||||
admin_lev1$ecs_count <- poly.counts(ecs,admin_lev1)
|
||||
admin_lev1$ecs_percent<- prop.table(admin_lev1$ecs_count)
|
||||
|
@ -331,7 +353,7 @@ Though there are too few eco-congregations and transition groups for a numerical
|
|||
# TODO: clip choropleth polygons to buildings shapefile (possble superceded by pverlay on lev2)
|
||||
|
||||
# Draw initial choropleth map of ECS concentration (using tmap and sf below by default)
|
||||
|
||||
# Revising re: CRS inset maps complete to here
|
||||
tm_shape(admin_lev2) +
|
||||
tm_fill(col = "ecs_count", palette = "Oranges", title = "Concentration of ECS groups") +
|
||||
tm_borders(alpha=.5, lwd=0.1) +
|
||||
|
@ -461,7 +483,7 @@ tm_shape(admin_lev2) +
|
|||
tm_borders(alpha=.5, lwd=0.1) +
|
||||
tm_shape(admin_lev1) +
|
||||
tm_borders(lwd=0.6) +
|
||||
tm_shape(ecs_sf) +
|
||||
tm_shape(ecs_sf_centralbelt) +
|
||||
tm_dots("red", size = .02, alpha = .2) +
|
||||
tm_scale_bar(position = c("right", "bottom")) +
|
||||
tm_style("gray") +
|
||||
|
@ -595,8 +617,9 @@ unzip("data/SG_UrbanRural_2016.zip", exdir = "data")
|
|||
}
|
||||
# Todo: remove sp datasets when sf revisions are complete. Currently running in parallel
|
||||
urbanrural <- readOGR("./data", "SG_UrbanRural_2016")
|
||||
urbanrural_sf <- st_read("data/SG_UrbanRural_2016.shp")
|
||||
urbanrural_sf_simplified <- st_simplify(urbanrural_sf)
|
||||
proj4string(urbanrural) <- CRS("+init=epsg:27700")
|
||||
urbanrural_sf <- st_read("data/SG_UrbanRural_2016.shp") %>% st_transform(27700)
|
||||
urbanrural_sf_simplified <- st_simplify(urbanrural_sf) %>% st_transform(27700)
|
||||
# TODO: worth considering uploading data to zenodo for long-term reproducibility as ScotGov shuffles this stuff around periodically breaking URLs
|
||||
|
||||
# This code will generate a table of frequencies for each spatialpointsdataframe in urbanrural
|
||||
|
@ -661,7 +684,10 @@ ggplot(urbanrural_gathered,
|
|||
|
||||
# Generate static plot for printing
|
||||
|
||||
tm_shape(urbanrural_sf_simplified) +
|
||||
# Generate code for inset map of central belt
|
||||
# First build large plot using National level view
|
||||
|
||||
urbanrural_uk_ecs_choropleth_plot <- tm_shape(urbanrural_sf_simplified) +
|
||||
tm_polygons(col = "UR8FOLD", palette = "BrBG", lwd=0.001, n=9,
|
||||
title = "UrbanRural 8 Fold Scale") +
|
||||
tm_shape(ecs_sf) +
|
||||
|
@ -678,29 +704,39 @@ tm_shape(urbanrural_sf_simplified) +
|
|||
frame = FALSE,
|
||||
title.size = .7,
|
||||
legend.title.size = .7,
|
||||
inner.margins = c(0.1, 0.1, 0.05, 0.05)
|
||||
# values are bottom, left, top, right, modified here to make space for inset
|
||||
inner.margins = c(0.5, 0.1, 0.05, 0.05)
|
||||
)
|
||||
|
||||
# Generate new sf shape using bounding box and subset of urbanrural for central belt inset below
|
||||
# Note: coordinates use BNG as CRS (EPSG: 27700)
|
||||
# Next build smaller central belt plot for inset:
|
||||
|
||||
centralbelt_region = st_bbox(c(xmin = 224479.2, xmax = 642963.5,
|
||||
ymin = 347475.0, ymax = 711014.5),
|
||||
crs = st_crs(urbanrural_sf)) %>%
|
||||
st_as_sfc()
|
||||
urbanrural_sf_simplified_centralbelt <- st_crop(urbanrural_sf_simplified, centralbelt_region)
|
||||
|
||||
# Generate code for inset map of central belt
|
||||
st_crs(urbanrural_sf_simplified)
|
||||
st_crs(urbanrural_sf)
|
||||
proj4string(urbanrural)
|
||||
st_crs(centralbelt_region)
|
||||
|
||||
urbanrural_centralbelt_ecs_choropleth_plot <-
|
||||
tm_shape(urbanrural_sf_simplified_centralbelt) +
|
||||
tm_polygons(col = "UR8FOLD", palette = "BrBG") +
|
||||
tm_shape(ecs_sf_centralbelt) + tm_dots("red", size = .05, alpha = .4)
|
||||
|
||||
# centralbelt_map = tm_shape(centralbelt_region) + tm_polygons() +
|
||||
# tm_shape(st_within(ecs_sf, centralbelt_region)) +
|
||||
# tm_dots("red", size = .05, alpha = .4) +
|
||||
# tm_shape(nz_region) + tm_borders(lwd = 3)
|
||||
# Still need to mod above line
|
||||
# Stitch together maps using grid()
|
||||
|
||||
# library(grid)
|
||||
# nz_height_map
|
||||
# print(nz_map, vp = viewport(0.8, 0.27, width = 0.5, height = 0.5))
|
||||
# Note: viewport values are X, Y, width and height
|
||||
print(urbanrural_centralbelt_ecs_choropleth_plot, vp = viewport(0.8, 0.27, width = 0.5, height = 0.5))
|
||||
|
||||
# Test by saving to file
|
||||
vp_urbanrural_centralbelt_ecs_choropleth_plot <- viewport(x = 1.5, y = 0.15, width = 5.5, height = 1.5)
|
||||
|
||||
tmap_mode("plot")
|
||||
urbanrural_uk_ecs_choropleth_plot
|
||||
print(urbanrural_centralbelt_ecs_choropleth_plot, vp = vp_urbanrural_centralbelt_ecs_choropleth_plot)
|
||||
|
||||
save_tmap(urbanrural_uk_ecs_choropleth_plot, "urbanrural_test.png", scale = 0.7, width = 6.125,
|
||||
insets_tm = urbanrural_centralbelt_ecs_choropleth_plot,
|
||||
insets_vp = vp_urbanrural_centralbelt_ecs_choropleth_plot)
|
||||
|
||||
# Generate dynamic plot for exploring
|
||||
# TODO: change basemap
|
||||
|
@ -727,6 +763,7 @@ unzip("data/simd2016_withgeog.zip", exdir = "data", junkpaths = TRUE)
|
|||
simd_shapes <- readOGR("./data", "sc_dz_11")
|
||||
simd_indicators <- read.csv("./data/simd2016_withinds.csv")
|
||||
simd_indicators_min <- simd_indicators[c(1,6:17)]
|
||||
# Original data is in wgs, so need to convert from wgs to bng to work with analysis across data sets
|
||||
simd_wgs <- merge(x=simd_shapes, y=simd_indicators_min, by.x = "DataZone", by.y = "Data_Zone")
|
||||
simd <- spTransform(simd_wgs, bng)
|
||||
|
||||
|
@ -901,13 +938,12 @@ forestinv_simplified <- st_simplify(forestinv)
|
|||
# scenicareas_sp <- readOGR("./data", "ScenicAreas")
|
||||
|
||||
# Set symmetrical CRS for analysis below (inserted here in order to correct errors, may be deprecated later)
|
||||
st_crs(sssi) <- 27700
|
||||
st_crs(ecs_sf) <- 27700
|
||||
st_crs(pow_pointX_sf) <- 27700
|
||||
st_crs(dtas_sf) <- 27700
|
||||
st_crs(transition_sf) <- 27700
|
||||
st_crs(permaculture_sf) <- 27700
|
||||
|
||||
# st_crs(sssi) <- 27700
|
||||
# st_crs(ecs_sf) <- 27700
|
||||
# st_crs(pow_pointX_sf) <- 27700
|
||||
# st_crs(dtas_sf) <- 27700
|
||||
# st_crs(transition_sf) <- 27700
|
||||
# st_crs(permaculture_sf) <- 27700
|
||||
|
||||
# Define buffer and measure number of ECS groups within 0.5 miles of all SSSI
|
||||
# CRS uses meters for units, so a buffer for 0.5 miles would use 805 meters)
|
||||
|
@ -1125,18 +1161,19 @@ write.csv(forestinv_counts_merged, "derivedData/forestinv_counts_merged.csv", ro
|
|||
```{r sssi_ecs_buffer_plot, message=FALSE, warning=FALSE, fig.width=4, fig.cap="Figure 11"}
|
||||
|
||||
# Plot SSSI polygons (showing buffers) with ECS points (coloured by location)
|
||||
# TODO set bounding box to clip all polygons (or identify offending layer)
|
||||
|
||||
tm_shape(sssi_simplified) +
|
||||
tm_shape(sssi_simplified, bbox = scotland) +
|
||||
tm_fill(col = "green", alpha = 0.3, lwd=0.001,
|
||||
title = "Sites of Special Scientific Interest and ECS Groups") +
|
||||
# tm_shape(sssi_buf50) + tm_borders(lwd=0.001) +
|
||||
# tm_shape(sssi_buf500) + tm_borders(lwd=0.001)
|
||||
tm_shape(admin_lev1_sf) + tm_borders(lwd=0.1) +
|
||||
tm_shape(ecs_sf) + tm_dots("red", size = .05, alpha = .4) +
|
||||
tm_shape(admin_lev1_sf) + tm_borders(lwd=0.01) +
|
||||
tm_shape(ecs_sf) + tm_dots("red", size = .02, alpha = .4) +
|
||||
# tm_shape(ecs_sf_sssi50m) + tm_dots("yellow", size = .5, alpha = .4) +
|
||||
# tm_shape(ecs_sf_sssi500m) + tm_dots("orange", size = .5, alpha = .4) +
|
||||
# tm_shape(ecs_sf_sssibeyond500m) + tm_dots("red", size = .5, alpha = .4)
|
||||
tm_scale_bar(position = c("right", "bottom")) +
|
||||
# tm_scale_bar(position = c("right", "bottom")) +
|
||||
tm_style("gray") +
|
||||
tm_credits("Data: UK Data Service (OGL)\n& Jeremy H. Kidwell,\nGraphic is CC-by-SA 4.0",
|
||||
size = 0.4,
|
||||
|
@ -1155,13 +1192,14 @@ tm_shape(sssi_simplified) +
|
|||
```{r all_wilderness_ecs_plot, message=FALSE, warning=FALSE, fig.width=4, fig.cap="Figure 12"}
|
||||
|
||||
# Plot map with all wilderness shapes on it
|
||||
|
||||
tm_shape(sssi_simplified) + tm_fill(col = "blue", alpha = 0.3, lwd=0.001, title = "Wilderness Areas") +
|
||||
tm_shape(wildland_simplified) + tm_fill(col = "green", alpha = 0.3, lwd=0.001) +
|
||||
tm_shape(forestinv_simplified) + tm_fill(col = "orange", alpha = 0.3, lwd=0.001) +
|
||||
tm_scale_bar(breaks = c(0, 100, 200), size = 1) +
|
||||
tm_shape(ecs_sf) + tm_dots("red", size = .05, alpha = .4) +
|
||||
tm_scale_bar(position = c("right", "bottom")) +
|
||||
# TODO set bounding box to clip all polygons (or identify offending layer)
|
||||
tm_shape(sssi_simplified, bbox = scotland) + tm_fill(col = "blue", alpha = 0.4, lwd=0.01, title = "Wilderness Areas") +
|
||||
tm_shape(wildland_simplified, bbox = scotland) + tm_fill(col = "green", alpha = 0.4, lwd=0.01) +
|
||||
tm_shape(forestinv_simplified, bbox = scotland) + tm_fill(col = "orange", alpha = 0.4, lwd=0.01) +
|
||||
tm_shape(admin_lev1) + tm_borders(lwd=0.01) +
|
||||
# tm_scale_bar(breaks = c(0, 100, 200), size = 1) +
|
||||
tm_shape(ecs_sf) + tm_dots("red", size = .02, alpha = .4) +
|
||||
# tm_scale_bar(position = c("right", "bottom")) +
|
||||
tm_style("gray") +
|
||||
tm_credits("Data: UK Data Service (OGL)\n& Jeremy H. Kidwell,\nGraphic is CC-by-SA 4.0",
|
||||
size = 0.4,
|
||||
|
|
File diff suppressed because one or more lines are too long
|
@ -1,13 +1,13 @@
|
|||
---
|
||||
title: "Mapping Environmental Action in Scotland"
|
||||
abstract:
|
||||
# thanks: "Replication files are available on the author's Github account (https://github.com/kidwellj/mapping_environmental_action). **Current version**: February 22, 2019
|
||||
# thanks: "Replication files are available on the author's Github account (https://github.com/kidwellj/mapping_environmental_action). **Current version**: February 26, 2019
|
||||
style: jeremy1
|
||||
author: "[Jeremy H. Kidwell](http://jeremykidwell.info)"
|
||||
affiliation: University of Birmingham
|
||||
institute: University of Birmingham
|
||||
e-mail: "[j.kidwell@bham.ac.uk](mailto:j.kidwell@bham.ac.uk)"
|
||||
date: "2019-02-22"
|
||||
date: "2019-02-26"
|
||||
bibliography: biblio.bib
|
||||
linkcolor: black
|
||||
geometry: margin=1in
|
||||
|
|
Loading…
Reference in a new issue