trs_admissions_survey2021/To-do list Markdown.Rmd
rehughes07 6b3c9f22ee Coding for Means, Some attempt at Likert Graphs
I've finished the coding for means of interest, knowledge, and employablity of Theology and Religious Studies by the other subjects. I've installed the required packages for making a graph of the Likert responses (categorical to go along with the already created means ones), but have not been able to figure how it works yet. I'll have another look at it later and work with it more.
2021-12-10 11:52:22 +00:00

771 lines
30 KiB
Plaintext

---
title: "RMarkdown Admissions_Survey2021"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(ggplot2)
```
# Upload Data
```{r Upload Data}
TSR_data <- read.csv("./data/TSR data complete.csv")
subject_data <- read.csv("./data/Subject data.csv")
```
# Basic summary visualisations (RH):
- Q2 (respondent age)
```{r respondent age}
TSR_data$Age <- factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say"))
age_pie <- pie(table(TSR_data$Age))
```
- Q3 (year of study)
```{r year of study}
TSR_data$MOST.RECENT.year.of.study <- factor(TSR_data$MOST.RECENT.year.of.study, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9), labels = c("Year 11/S4/Year 12(NI)", "Year 12/S5/Year 13(NI)", "Year 13/S6/Year 14(NI)", "I am currently on a gap year", "I am currently on an undergraduate/HE college course", "I am in full-time employment", "I am unemployed", "Other", "Prefer not to say"))
Year_study_pie <- pie(table(TSR_data$MOST.RECENT.year.of.study))
```
- Q16 (gender identity)
```{r gender identity}
TSR_data$Gender <- factor(TSR_data$Gender, levels = c(1, 2, 3, 4), labels = c("Male", "Female", "I identify my gender in another way", "Prefer not to say"))
gender_pie <- pie(table(TSR_data$Gender))
```
- Q17 (ethnic self-id)
```{r ethnic self-id}
TSR_data$Ethnicity <- factor(TSR_data$Ethnicity, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ,18, 19), labels = c("Arab", "Asian/Asian British - Indian", "Asian/Asian British - Pakistani", "Asian/Asian British - Bangladeshi", "Asian/Asian British - Chinese", "Asian/Asian British - Any other Asian background", "Black/Black British - African", "Black/Black British - Caribbean", "Black/Black British - Any other Black background", "Mixed/Multiple Ethnic Groups - White and Black Caribbean", "Mixed/Multiple Ethnic Groups - White and Black African", "Mixed/Multiple Ethnic Groups - White and Black Asian", "Mixed/Multiple Ethnic Groups - Any other Mixed/Multiple Ethnic background", "White - English/Welsh/Scottish/Northern Irish/British", "White - Irish", "White - Gypsy or Irish Traveller", "White - Any other White background", "Other Ethnic group, please describe", "Prefer not to say"))
Ethnicity_bar <- ggplot(TSR_data, aes(Ethnicity)) + geom_bar() + coord_flip()
Ethnicity_bar
```
- Q18 (religion)
```{r religion}
TSR_data$Religious.Affliation <- factor(TSR_data$Religious.Affliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other"))
Religious_affiliation_bar <- ggplot(TSR_data, aes(Religious.Affliation)) + geom_bar() + coord_flip()
Religious_affiliation_bar
```
# Visualisations of LIKERT responses (RH):
- For questions Q6 (subject interest) / Q5 (subject knowledge) / Q7 employability prospects:
- visualisation as summaries for all subjects LIKERT data as stacked bar chart (colours for bar segments from cool to warm)
```{r Visualization by Subject}
### Each Subject is a different column so will need to figure out how to code the columns together into one graph
# Higher score indicates less agreement...need to reverse score
## 1=5, 2=4, 3=3, 4=2, 5=1, 6=0 --- Not done yet. See what they look like without reverse scoring
## Files have been reverse scored - Higher score now indicates more agreement
#Q5 Subject Knowledge/Understanding
subject_data$Subject <- factor(subject_data$Subject, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), labels = c("Philosophy", "Sociology", "Psychology", "History", "Ethics", "Theology", "Religious Studies", "Politics", "English", "Math", "Computer Science", "Business"))
understanding_mean <- aggregate(Understanding ~ Subject, data = subject_data, mean)
understanding_bar <- ggplot(understanding_mean, aes(x = Subject, y = Understanding)) + stat_summary(fun = "mean", geom = "bar") + coord_flip()
understanding_bar
#Q6 Subject Interest
interest_mean <- aggregate(Interest ~ Subject, data = subject_data, mean)
interest_bar <- ggplot(interest_mean, aes(x = Subject, y = Interest)) + stat_summary(fun = "mean", geom = "bar") + coord_flip()
interest_bar
#Q7 Employability Prospects
employability_mean <- aggregate(Employability ~ Subject, data = subject_data, mean)
employability_bar <- ggplot(employability_mean, aes(x = Subject, y = Employability)) + stat_summary(fun = "mean", geom = "bar") + coord_flip()
employability_bar
### Categorical Graph ###
install.packages("devtools")
install.packages("usethis")
library(devtools)
require(likert)
#devtools::install_github('jbryer/likert')
#likert_test <- likert(subject_data)
Understanding_data <- TSR_data[, 6:17]
likert_test_understand <- likert(Understanding_data)
Interest_data <- TSR_data[, 18:29]
Employability_data <- TSR_data[, 30:41]
```
- separate visualisation of summary data as pie chart only for 4 key subjects: Philosophy, Ethics, Theology, Religious Studies, but with data represented as aggregated "Positive" / "Negative" responses
```{r Visualization for 4 Key Subjects}
## Subset by "Positive" / "Negative"
keysubjects_data <- subject_data[subject_data$Subject == "Philosophy" | subject_data$Subject == "Ethics" | subject_data$Subject == "Theology" | subject_data$Subject == "Religious Studies", ]
recode_interest <- ifelse(3 <= keysubjects_data$Interest & keysubjects_data$Interest >=5, "Positive", "Negative")
keysubjects_data <- cbind(keysubjects_data, recode_interest)
keysubjects_data$recode_interest <- factor(keysubjects_data$recode_interest)
table(keysubjects_data$recode_interest, keysubjects_data$Subject)
```
- subsetted visualisations of responses with separate subsetting by response to Q8-9, Q18, Q17, Q16
- For question Q8 + Q9 (for religious people)
- visualisation summary of responses
- show subsetted visualisations of responses by response to, Q18, Q17, Q16, Q13, Q14
- For responses to Q10-12 (what subjects are involved in...):
- represent answer counts as descending bar chart for each Q
- subset answers by Q6 (positive / negative) and Q5 (positive / negative)
# Correlation testing:
- For Q6 (subject interest) / Q5 (subject knowledge) / Q7 employability prospects, test for nature / strength of correlation with responses to:
- Q8-9 responses
- Q18 responses
- Q17
```{r Q6 Correlations - Subject Interest}
#Q8-9 (8 - Theology as subject for religious people; 9 - Religion as study for religious people)
# This would be suitable for correlation
#Q17 (Ethnicity)
# This would be categorical, so ANOVA
#Q18 (Religion)
# This would also be categorical, so ANOVA
```
```{r Q5 Correlations - Subject Knowledge}
#Q8-9 (8 - Theology as subject for religious people; 9 - Religion as study for religious people)
# This would be suitable for correlation
#Q17 (Ethnicity)
# This would be categorical, so ANOVA
#Q18 (Religion)
# This would also be categorical, so ANOVA
```
```{r Q7 Correlations - Employability}
#Q8-9 (8 - Theology as subject for religious people; 9 - Religion as study for religious people)
# This would be suitable for correlation
#Q17 (Ethnicity)
# This would be categorical, so ANOVA
#Q18 (Religion)
# This would also be categorical, so ANOVA
```
```{r testing fun}
#testcor_data <- subject_data[subject_data$Subject == "Psychology" | subject_data$Subject == "Theology", ]
#t.test(Interest ~ Subject, data = testcor_data)
# testsubset <- TSR_data[TSR_data$Interested.in.Studying.Psychology < 3 & TSR_data$Interested.in.Studying.Psychology != 0, ]
# as.numeric(testsubset$Interested.in.studying.Theology)
# mean(testsubset$Interested.in.studying.Theology, na.rm = TRUE)
#
# mean(as.numeric(testsubset$Interested.in.studying.Theology), na.rm = TRUE)
#
# as.numeric(testsubset$Interested.in.studying.Religious.Studies)
# mean(testsubset$Interested.in.studying.Religious.Studies, na.rm = TRUE)
#
# testsubset2 <- TSR_data[TSR_data$Interested.in.Studying.Psychology > 3, ]
# mean(as.numeric(testsubset2$Interested.in.studying.Theology), na.rm = TRUE)
# mean(as.numeric(testsubset2$Interested.in.studying.Religious.Studies), na.rm = TRUE)
```
## Mean Interest in Theology and Religious Studies by High/Low Subject Interest
```{r Philosophy}
### Philosophy ###
Philos_subset_Low <- TSR_data[TSR_data$InterestinstudyingPhilosophy < 3 & TSR_data$InterestinstudyingPhilosophy != 0, ]
Philos_subset_High <- TSR_data[TSR_data$InterestinstudyingPhilosophy > 3, ]
## Theology Interest
#Low interest in Philosophy
mean(as.numeric(Philos_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
#High interest in Philosophy
mean(as.numeric(Philos_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
## Religious Studies Interest
#Low interest in Philosophy
mean(as.numeric(Philos_subset_Low$InterestedinstudyingReligiousStudies), na.rm = TRUE)
#High interest in Philosophy
mean(as.numeric(Philos_subset_High$InterestedinstudyingReligiousStudies), na.rm = TRUE)
```
```{r Sociology}
### Sociology ###
Soc_subset_Low <- TSR_data[TSR_data$InterestinstudyingSociaology < 3 & TSR_data$InterestinstudyingSociaology != 0, ]
Soc_subset_High <- TSR_data[TSR_data$InterestinstudyingSociaology > 3, ]
## Theology Interest
#Low interest in Sociology
lSocTheo <- mean(as.numeric(Soc_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
#High interest in Sociology
hSocTheo <- mean(as.numeric(Soc_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
## Religious Studies Interest
#Low interest in Sociology
mean(as.numeric(Soc_subset_Low$InterestedinstudyingReligiousStudies), na.rm = TRUE)
#High interest in Sociology
mean(as.numeric(Soc_subset_High$InterestedinstudyingReligiousStudies), na.rm = TRUE)
```
```{r Psychology}
### Psychology ###
Psych_subset_Low <- TSR_data[TSR_data$InterestedinStudyingPsychology < 3 & TSR_data$InterestedinStudyingPsychology != 0, ]
Psych_subset_High <- TSR_data[TSR_data$InterestedinStudyingPsychology > 3, ]
## Theology Interest
#Low interest in Psychology
mean(as.numeric(Psych_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
#High interest in Psychology
mean(as.numeric(Psych_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
## Religious Studies Interest
#Low interest in Psychology
mean(as.numeric(Psych_subset_Low$InterestedinstudyingReligiousStudies), na.rm = TRUE)
#High interest in Psychology
mean(as.numeric(Psych_subset_High$InterestedinstudyingReligiousStudies), na.rm = TRUE)
```
```{r History}
### History ###
Hist_subset_Low <- TSR_data[TSR_data$InterestedinstudyingHistory < 3 & TSR_data$InterestedinstudyingHistory != 0, ]
Hist_subset_High <- TSR_data[TSR_data$InterestedinstudyingHistory > 3, ]
## Theology Interest
#Low interest in History
mean(as.numeric(Hist_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
#High interest in History
mean(as.numeric(Hist_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
## Religious Studies Interest
#Low interest in History
mean(as.numeric(Hist_subset_Low$InterestedinstudyingReligiousStudies), na.rm = TRUE)
#High interest in History
mean(as.numeric(Hist_subset_High$InterestedinstudyingReligiousStudies), na.rm = TRUE)
```
```{r Ethics}
### Ethics ###
Ethics_subset_Low <- TSR_data[TSR_data$InterestedinstudyingEthics < 3 & TSR_data$InterestedinstudyingEthics != 0, ]
Ethics_subset_High <- TSR_data[TSR_data$InterestedinstudyingEthics > 3, ]
## Theology Interest
#Low interest in Ethics
mean(as.numeric(Ethics_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
#High interest in Ethics
mean(as.numeric(Ethics_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
## Religious Studies Interest
#Low interest in Ethics
mean(as.numeric(Ethics_subset_Low$InterestedinstudyingReligiousStudies), na.rm = TRUE)
#High interest in Ethics
mean(as.numeric(Ethics_subset_High$InterestedinstudyingReligiousStudies), na.rm = TRUE)
```
```{r Politics}
### Politics ###
Polit_subset_Low <- TSR_data[TSR_data$InterestedinstudyingPolitics < 3 & TSR_data$InterestedinstudyingPolitics != 0, ]
Polit_subset_High <- TSR_data[TSR_data$InterestedinstudyingPolitics > 3, ]
## Theology Interest
#Low interest in Politics
mean(as.numeric(Polit_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
#High interest in Politics
mean(as.numeric(Polit_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
## Religious Studies Interest
#Low interest in Politics
mean(as.numeric(Polit_subset_Low$InterestedinstudyingReligiousStudies), na.rm = TRUE)
#High interest in Politics
mean(as.numeric(Polit_subset_High$InterestedinstudyingReligiousStudies), na.rm = TRUE)
```
```{r English}
### English ###
Eng_subset_Low <- TSR_data[TSR_data$InterestedinstudyingEnglish < 3 & TSR_data$InterestedinstudyingEnglish != 0, ]
Eng_subset_High <- TSR_data[TSR_data$InterestedinstudyingEnglish > 3, ]
## Theology Interest
#Low interest in English
mean(as.numeric(Eng_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
#High interest in English
mean(as.numeric(Eng_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
## Religious Studies Interest
#Low interest in English
mean(as.numeric(Eng_subset_Low$InterestedinstudyingReligiousStudies), na.rm = TRUE)
#High interest in English
mean(as.numeric(Eng_subset_High$InterestedinstudyingReligiousStudies), na.rm = TRUE)
```
```{r Math}
### Math ###
Math_subset_Low <- TSR_data[TSR_data$InterestedinstudyingMath < 3 & TSR_data$InterestedinstudyingMathy != 0, ]
Math_subset_High <- TSR_data[TSR_data$InterestedinstudyingMath > 3, ]
## Theology Interest
#Low interest in Math
mean(as.numeric(Math_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
#High interest in Math
mean(as.numeric(Math_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
## Religious Studies Interest
#Low interest in Math
mean(as.numeric(Math_subset_Low$InterestedinstudyingReligiousStudies), na.rm = TRUE)
#High interest in Math
mean(as.numeric(Math_subset_High$InterestedinstudyingReligiousStudies), na.rm = TRUE)
```
```{r Computer Science}
### Computer Science ###
CompSci_subset_Low <- TSR_data[TSR_data$InterestedinstudyingComputerScience < 3 & TSR_data$InterestedinstudyingComputerScience != 0, ]
CompSci_subset_High <- TSR_data[TSR_data$InterestedinstudyingComputerScience > 3, ]
## Theology Interest
#Low interest in Computer Science
mean(as.numeric(CompSci_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
#High interest in Computer Science
mean(as.numeric(CompSci_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
## Religious Studies Interest
#Low interest in Computer Science
mean(as.numeric(CompSci_subset_Low$InterestedinstudyingReligiousStudies), na.rm = TRUE)
#High interest in Computer Science
mean(as.numeric(CompSci_subset_High$InterestedinstudyingReligiousStudies), na.rm = TRUE)
```
```{r Business}
### Business ###
Busi_subset_Low <- TSR_data[TSR_data$InterestedinstudyingBusiness < 3 & TSR_data$InterestedinstudyingBusiness != 0, ]
Busi_subset_High <- TSR_data[TSR_data$InterestedinstudyingBusiness > 3, ]
## Theology Interest
#Low interest in Business
mean(as.numeric(Busi_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
#High interest in Business
mean(as.numeric(Busi_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
## Religious Studies Interest
#Low interest in Business
mean(as.numeric(Busi_subset_Low$InterestedinstudyingReligiousStudies), na.rm = TRUE)
#High interest in Business
mean(as.numeric(Busi_subset_High$InterestedinstudyingReligiousStudies), na.rm = TRUE)
```
## Mean Knowledge in Theology and Religious Studies by High/Low Subject Knowledge
```{r Philosophy}
### Philosophy ###
Philos_subset_Low <- TSR_data[TSR_data$GoodunderstandingofPhilosophy < 3 & TSR_data$GoodunderstandingofPhilosophy != 0, ]
Philos_subset_High <- TSR_data[TSR_data$GoodunderstandingofPhilosophy > 3, ]
## Theology Knowledge
#Low knowledge in Philosophy
mean(as.numeric(Philos_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
#High knowledge in Philosophy
mean(as.numeric(Philos_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
## Religious Studies Knowledge
#Low knowledge in Philosophy
mean(as.numeric(Philos_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE)
#High knowledge in Philosophy
mean(as.numeric(Philos_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE)
```
```{r Sociology}
### Sociology ###
Soc_subset_Low <- TSR_data[TSR_data$GoodunderstandingofSociology < 3 & TSR_data$GoodunderstandingofSociology != 0, ]
Soc_subset_High <- TSR_data[TSR_data$GoodunderstandingofSociology > 3, ]
## Theology knowledge
#Low knowledge in Sociology
mean(as.numeric(Soc_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
#High knowledge in Sociology
mean(as.numeric(Soc_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
## Religious Studies knowledge
#Low knowledge in Sociology
mean(as.numeric(Soc_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE)
#High knowledge in Sociology
mean(as.numeric(Soc_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE)
```
```{r Psychology}
### Psychology ###
Psych_subset_Low <- TSR_data[TSR_data$GoodunderstandingofPsychology < 3 & TSR_data$GoodunderstandingofPsychology != 0, ]
Psych_subset_High <- TSR_data[TSR_data$GoodunderstandingofPsychology > 3, ]
## Theology knowledge
#Low knowledge in Psychology
mean(as.numeric(Psych_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
#High knowledge in Psychology
mean(as.numeric(Psych_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
## Religious Studies knowledge
#Low knowledge in Psychology
mean(as.numeric(Psych_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE)
#High knowledge in Psychology
mean(as.numeric(Psych_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE)
```
```{r History}
### History ###
Hist_subset_Low <- TSR_data[TSR_data$GoodunderstandingofHistory < 3 & TSR_data$GoodunderstandingofHistory != 0, ]
Hist_subset_High <- TSR_data[TSR_data$GoodunderstandingofHistory > 3, ]
## Theology knowledge
#Low knowledge in History
mean(as.numeric(Hist_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
#High knowledge in History
mean(as.numeric(Hist_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
## Religious Studies knowledge
#Low knowledge in History
mean(as.numeric(Hist_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE)
#High knowledge in History
mean(as.numeric(Hist_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE)
```
```{r Ethics}
### Ethics ###
Ethics_subset_Low <- TSR_data[TSR_data$GoodunderstandingofEthics < 3 & TSR_data$GoodunderstandingofEthics != 0, ]
Ethics_subset_High <- TSR_data[TSR_data$GoodunderstandingofEthics > 3, ]
## Theology knowledge
#Low knowledge in Ethics
mean(as.numeric(Ethics_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
#High knowledge in Ethics
mean(as.numeric(Ethics_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
## Religious Studies knowledge
#Low knowledge in Ethics
mean(as.numeric(Ethics_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE)
#High knowledge in Ethics
mean(as.numeric(Ethics_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE)
```
```{r Politics}
### Politics ###
Polit_subset_Low <- TSR_data[TSR_data$GoodunderstandingofPolitics < 3 & TSR_data$GoodunderstandingofPolitics != 0, ]
Polit_subset_High <- TSR_data[TSR_data$GoodunderstandingofPolitics > 3, ]
## Theology knowledge
#Low knowledge in Politics
mean(as.numeric(Polit_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
#High knowledge in Politics
mean(as.numeric(Polit_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
## Religious Studies knowledge
#Low knowledge in Politics
mean(as.numeric(Polit_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE)
#High knowledge in Politics
mean(as.numeric(Polit_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE)
```
```{r English}
### English ###
Eng_subset_Low <- TSR_data[TSR_data$GoodunderstandingofEnglish < 3 & TSR_data$GoodunderstandingofEnglish != 0, ]
Eng_subset_High <- TSR_data[TSR_data$GoodunderstandingofEnglish > 3, ]
## Theology knowledge
#Low knowledge in English
mean(as.numeric(Eng_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
#High knowledge in English
mean(as.numeric(Eng_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
## Religious Studies knowledge
#Low knowledge in English
mean(as.numeric(Eng_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE)
#High knowledge in English
mean(as.numeric(Eng_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE)
```
```{r Math}
### Math ###
Math_subset_Low <- TSR_data[TSR_data$GoodunderstandingofMath < 3 & TSR_data$GoodunderstandingofMath != 0, ]
Math_subset_High <- TSR_data[TSR_data$GoodunderstandingofMath > 3, ]
## Theology knowledge
#Low knowledge in Math
mean(as.numeric(Math_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
#High knowledge in Math
mean(as.numeric(Math_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
## Religious Studies knowledge
#Low knowledge in Math
mean(as.numeric(Math_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE)
#High knowledge in Math
mean(as.numeric(Math_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE)
```
```{r Computer Science}
### Computer Science ###
CompSci_subset_Low <- TSR_data[TSR_data$GoodunderstandingofComputerScience < 3 & TSR_data$GoodunderstandingofComputerScience != 0, ]
CompSci_subset_High <- TSR_data[TSR_data$GoodunderstandingofComputerScience > 3, ]
## Theology knowledge
#Low knowledge in Computer Science
mean(as.numeric(CompSci_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
#High knowledge in Computer Science
mean(as.numeric(CompSci_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
## Religious Studies knowledge
#Low knowledge in Computer Science
mean(as.numeric(CompSci_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE)
#High knowledge in Computer Science
mean(as.numeric(CompSci_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE)
```
```{r Business}
### Business ###
Busi_subset_Low <- TSR_data[TSR_data$GoodunderstandingofBusiness < 3 & TSR_data$GoodunderstandingofBusiness != 0, ]
Busi_subset_High <- TSR_data[TSR_data$GoodunderstandingofBusiness > 3, ]
## Theology knowledge
#Low knowledge in Business
mean(as.numeric(Busi_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
#High knowledge in Business
mean(as.numeric(Busi_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
## Religious Studies knowledge
#Low knowledge in Business
mean(as.numeric(Busi_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE)
#High knowledge in Business
mean(as.numeric(Busi_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE)
```
## Mean Employability in Theology and Religious Studies by High/Low Subject Employability
```{r Philosophy}
### Philosophy ###
Philos_subset_Low <- TSR_data[TSR_data$Philosophyemployability < 3 & TSR_data$Philosophyemployability != 0, ]
Philos_subset_High <- TSR_data[TSR_data$Philosophyemployability > 3, ]
## Theology employability
#Low employability in Philosophy
mean(as.numeric(Philos_subset_Low$Theologyemployability), na.rm = TRUE)
#High employability in Philosophy
mean(as.numeric(Philos_subset_Low$Theologyemployability), na.rm = TRUE)
## Religious Studies employability
#Low employability in Philosophy
mean(as.numeric(Philos_subset_Low$ReligiousStudiesemployability), na.rm = TRUE)
#High employability in Philosophy
mean(as.numeric(Philos_subset_High$ReligiousStudiesemployability), na.rm = TRUE)
```
```{r Sociology}
### Sociology ###
Soc_subset_Low <- TSR_data[TSR_data$Sociologyemployability < 3 & TSR_data$Sociologyemployability != 0, ]
Soc_subset_High <- TSR_data[TSR_data$Sociologyemployability > 3, ]
## Theology employability
#Low employability in Sociology
mean(as.numeric(Soc_subset_Low$Theologyemployability), na.rm = TRUE)
#High employability in Sociology
mean(as.numeric(Soc_subset_Low$Theologyemployability), na.rm = TRUE)
## Religious Studies employability
#Low employability in Sociology
mean(as.numeric(Soc_subset_Low$ReligiousStudiesemployability), na.rm = TRUE)
#High employability in Sociology
mean(as.numeric(Soc_subset_High$ReligiousStudiesemployability), na.rm = TRUE)
```
```{r Psychology}
### Psychology ###
Psych_subset_Low <- TSR_data[TSR_data$PsychologyEmployability < 3 & TSR_data$PsychologyEmployability != 0, ]
Psych_subset_High <- TSR_data[TSR_data$PsychologyEmployability > 3, ]
## Theology employability
#Low employability in Psychology
mean(as.numeric(Psych_subset_Low$Theologyemployability), na.rm = TRUE)
#High employability in Psychology
mean(as.numeric(Psych_subset_Low$Theologyemployability), na.rm = TRUE)
## Religious Studies employability
#Low employability in Psychology
mean(as.numeric(Psych_subset_Low$ReligiousStudiesemployability), na.rm = TRUE)
#High employability in Psychology
mean(as.numeric(Psych_subset_High$ReligiousStudiesemployability), na.rm = TRUE)
```
```{r History}
### History ###
Hist_subset_Low <- TSR_data[TSR_data$Historyemployability < 3 & TSR_data$Historyemployability != 0, ]
Hist_subset_High <- TSR_data[TSR_data$Historyemployability > 3, ]
## Theology employability
#Low employability in History
mean(as.numeric(Hist_subset_Low$Theologyemployability), na.rm = TRUE)
#High employability in History
mean(as.numeric(Hist_subset_Low$Theologyemployability), na.rm = TRUE)
## Religious Studies employability
#Low employability in History
mean(as.numeric(Hist_subset_Low$ReligiousStudiesemployability), na.rm = TRUE)
#High employability in History
mean(as.numeric(Hist_subset_High$ReligiousStudiesemployability), na.rm = TRUE)
```
```{r Ethics}
### Ethics ###
Ethics_subset_Low <- TSR_data[TSR_data$Ethicsemployability < 3 & TSR_data$Ethicsemployability != 0, ]
Ethics_subset_High <- TSR_data[TSR_data$Ethicsemployability > 3, ]
## Theology employability
#Low employability in Ethics
mean(as.numeric(Ethics_subset_Low$Theologyemployability), na.rm = TRUE)
#High employability in Ethics
mean(as.numeric(Ethics_subset_Low$Theologyemployability), na.rm = TRUE)
## Religious Studies employability
#Low employability in Ethics
mean(as.numeric(Ethics_subset_Low$ReligiousStudiesemployability), na.rm = TRUE)
#High employability in Ethics
mean(as.numeric(Ethics_subset_High$ReligiousStudiesemployability), na.rm = TRUE)
```
```{r Politics}
### Politics ###
Polit_subset_Low <- TSR_data[TSR_data$Politicsemployability < 3 & TSR_data$Politicsemployability != 0, ]
Polit_subset_High <- TSR_data[TSR_data$Politicsemployability > 3, ]
## Theology employability
#Low employability in Politics
mean(as.numeric(Polit_subset_Low$Theologyemployability), na.rm = TRUE)
#High employability in Politics
mean(as.numeric(Polit_subset_Low$Theologyemployability), na.rm = TRUE)
## Religious Studies employability
#Low employability in Politics
mean(as.numeric(Polit_subset_Low$ReligiousStudiesemployability), na.rm = TRUE)
#High employability in Politics
mean(as.numeric(Polit_subset_High$ReligiousStudiesemployability), na.rm = TRUE)
```
```{r English}
### English ###
Eng_subset_Low <- TSR_data[TSR_data$Englishemployability < 3 & TSR_data$Englishemployability != 0, ]
Eng_subset_High <- TSR_data[TSR_data$Englishemployability > 3, ]
## Theology employability
#Low employability in English
mean(as.numeric(Eng_subset_Low$Theologyemployability), na.rm = TRUE)
#High employability in English
mean(as.numeric(Eng_subset_Low$Theologyemployability), na.rm = TRUE)
## Religious Studies employability
#Low employability in English
mean(as.numeric(Eng_subset_Low$ReligiousStudiesemployability), na.rm = TRUE)
#High employability in English
mean(as.numeric(Eng_subset_High$ReligiousStudiesemployability), na.rm = TRUE)
```
```{r Math}
### Math ###
Math_subset_Low <- TSR_data[TSR_data$Mathemployability < 3 & TSR_data$Mathemployability != 0, ]
Math_subset_High <- TSR_data[TSR_data$Mathemployability > 3, ]
## Theology employability
#Low employability in Math
mean(as.numeric(Math_subset_Low$Theologyemployability), na.rm = TRUE)
#High employability in Math
mean(as.numeric(Math_subset_Low$Theologyemployability), na.rm = TRUE)
## Religious Studies employability
#Low employability in Math
mean(as.numeric(Math_subset_Low$ReligiousStudiesemployability), na.rm = TRUE)
#High employability in Math
mean(as.numeric(Math_subset_High$ReligiousStudiesemployability), na.rm = TRUE)
```
```{r Computer Science}
### Computer Science ###
CompSci_subset_Low <- TSR_data[TSR_data$ComputerScienceemployability < 3 & TSR_data$ComputerScienceemployability != 0, ]
CompSci_subset_High <- TSR_data[TSR_data$ComputerScienceemployability > 3, ]
## Theology employability
#Low employability in Computer Science
mean(as.numeric(CompSci_subset_Low$Theologyemployability), na.rm = TRUE)
#High employability in Computer Science
mean(as.numeric(CompSci_subset_Low$Theologyemployability), na.rm = TRUE)
## Religious Studies employability
#Low employability in Computer Science
mean(as.numeric(CompSci_subset_Low$ReligiousStudiesemployability), na.rm = TRUE)
#High employability in Computer Science
mean(as.numeric(CompSci_subset_High$ReligiousStudiesemployability), na.rm = TRUE)
```
```{r Business}
### Business ###
Busi_subset_Low <- TSR_data[TSR_data$Businessemployability < 3 & TSR_data$Businessemployability != 0, ]
Busi_subset_High <- TSR_data[TSR_data$Businessemployability > 3, ]
## Theology employability
#Low employability in Business
mean(as.numeric(Busi_subset_Low$Theologyemployability), na.rm = TRUE)
#High employability in Business
mean(as.numeric(Busi_subset_Low$Theologyemployability), na.rm = TRUE)
## Religious Studies employability
#Low employability in Business
mean(as.numeric(Busi_subset_Low$ReligiousStudiesemployability), na.rm = TRUE)
#High employability in Business
mean(as.numeric(Busi_subset_High$ReligiousStudiesemployability), na.rm = TRUE)
```