trs_admissions_survey2021/tsr_survey_analysis.Rmd
Jeremy Kidwell (Theology and Religion) 0da6527adf major rewriting
2024-02-20 14:01:35 +00:00

1306 lines
58 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
title: "RMarkdown Admissions_Survey2021"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
library(ggplot2)
library(usethis)
library(devtools)
library(likert)
library(RColorBrewer)
library("readxl")
library(haven)
# Define colour palettes for plots below
coul3 <- brewer.pal(3, "RdYlBu") # Using RdYlBu range to generate 3 colour palette: https://colorbrewer2.org/#type=diverging&scheme=RdYlBu&n=5
TSR_data <- read.csv("./data/TSR data complete.csv")
subject_data <- read.csv("./data/Subject data.csv")
admissions_data <- read_excel("./data/TSR_data_numbers.xlsx", sheet = "Raw data - completes")
# Set up local workspace, as needed:
if (dir.exists("data") == FALSE) {
dir.create("data")
}
# These paths are excluded from github as it is best practice for end-user to generate their own
if (dir.exists("figures") == FALSE) {
dir.create("figures")
}
if (dir.exists("derivedData") == FALSE) {
dir.create("derivedData")
}
# Refactor data
q2_labels <- c("15 or under" = 1, "16" = 2, "17" = 3, "18" = 4, "19" = 5, "20" = 6, "21 or over" = 7, "Prefer not to say" = 8)
admissions_data$Q2 <- labelled(admissions_data$Q2, q2_labels, label = "How old are you?")
admissions_data$Q3 <- labelled(admissions_data$Q3, c("Year 11/S4/Year 12(NI)" = 1, "Year 12/S5/Year 13(NI)" = 2, "Year 13/S6/Year 14(NI)" = 3, "I am currently on a gap year" = 4, "I am currently on an undergraduate/HE college course" = 5, "I am in full-time employment" = 6, "I am unemployed" = 7, "Other" = 8, "Prefer not to say" = 9), label = "Which of the following best describes your MOST RECENT year of study?")
admissions_data$Q4 <- labelled(admissions_data$Q4, c("Yes, definitely" = 1, "Yes, probably" = 2, "I havent ruled it out" = 3), label = "Are you considering or planning to go to university in the future?")
common_labels <- c(
"Strongly agree" = 1,
"Agree" = 2,
"Neither/Nor" = 3,
"Disagree" = 4,
"Strongly disagree" = 5,
"Prefer not to say" = 0
)
admissions_data <- admissions_data %>%
mutate_at(vars(starts_with("Q5_")), ~ labelled(., common_labels, label = "I have a good understanding of what this subject involves"))
admissions_data <- admissions_data %>%
mutate_at(vars(starts_with("Q6_")), ~ labelled(., common_labels, label = "I would be interested in studying this subject at University"))
common_labels2 <- c(
"Good employability prospects" = 1,
NULL = 2,
NULL = 3,
NULL = 4,
"Poor employability prospects" = 5,
"Prefer not to say" = 0
)
admissions_data <- admissions_data %>%
mutate_at(vars(starts_with("Q7_")), ~ labelled(., common_labels2, label = "This subject has… employability prospects"))
admissions_data$Q8 <- labelled(admissions_data$Q8, c("Theology is a subject for religious people" = 1, NULL = 2, NULL = 3, NULL = 4, "Theology is a subject for religious and non-religious people" = 5, "Prefer not to say" = 0), label = "Thinking about Theology, please select an option on the scale from 1 to 5 which best represents your opinion")
admissions_data$Q9 <- labelled(admissions_data$Q9, c("Religion is a subject for religious people" = 1, NULL = 2, NULL = 3, NULL = 4, "Religion is a subject for religious and non-religious people" = 5, "Prefer not to say" = 0), label = "Thinking about Religion, please select an option on the scale from 1 to 5 which best represents your opinion")
common_labels3 <- c(
"Psychology" = 1, "Arts" = 2, "Sociology" = 3, "Politics" = 4, "History" = 5, "Philosophy" = 6, "Ethics" = 7, "Archaeology" = 8, "Textual studies" = 9, "Literature" = 10, "Law" = 11, "Economics" = 12, "Science" = 13, "Prefer not to say" = 0)
admissions_data <- admissions_data %>%
mutate_at(vars(starts_with("Q10_")), ~ labelled(., common_labels3, label = "I think that a theology degree would include..."))
admissions_data <- admissions_data %>%
mutate_at(vars(starts_with("Q11_")), ~ labelled(., common_labels3, label = "I think that a religious studies degree would include..."))
common_labels4 <- c(
"Politics" = 1, "History" = 2, "Ethics" = 3, "Theology" = 4, "Religion" = 5, "Law" = 6, "Economics" = 7, "Maths" = 8, "Logic" = 9, "Prefer not to say" = 0)
admissions_data <- admissions_data %>%
mutate_at(vars(starts_with("Q12_")), ~ labelled(., common_labels4, label = "I think that a philosophy degree would include..."))
common_labels5 <- c("Yes" = 1, "No" = 2, "Prefer not to say" = 0)
admissions_data <- admissions_data %>%
mutate_at(vars(starts_with("Q13")), ~ labelled(., common_labels5, label = "Are you currently studying A level Religious Studies, or intending to?"))
admissions_data <- admissions_data %>%
mutate_at(vars(starts_with("Q14")), ~ labelled(., common_labels5, label = "Are you studying or did you previously study GCSE Religious Studies?"))
admissions_data$Q16 <- labelled(admissions_data$Q16, c("Male"=1, "Female"=2, "I identify my gender in another way"=3, "Prefer not to say"=4), label = "I identify my gender as…")
admissions_data$Q17 <- labelled(admissions_data$Q17, c("Arab"=1, "Indian"=2, "Pakistani"=3, "Bangladeshi"=4, "Chinese"=5, "Any other Asian background"=6, "Black - African"=7, "Black - Caribbean"=8, "Any other Black background"=9, "Mixed - White and Black Caribbean"=10, "Mixed - White and Black African"=11, "Mixed - White and Black Asian"=12, "Any other Mixed/Multiple Ethnic background"=13, "White - British"=14, "White - Irish"=15, "Gypsy or Irish Traveller"=16, "Any other White background"=17, "Other Ethnic group"=18, "Prefer not to say OR Other"=0), label = "What is your ethnic group?")
admissions_data$Q18 <- labelled(admissions_data$Q18, c("Agnostic"=1, "Atheist"=2, "Baha'i"=3, "Buddhist"=4, "Christian"=5, "Confucian"=6, "Jain"=7, "Jewish"=8, "Hindu"=9, "Indigenous Traditional Religious"=10, "Muslim"=11, "Pagan"=12, "Shinto"=13, "Sikh"=14, "Spiritual but not religious"=15, "Zoroastrian"=16, "No religion"=17, "Prefer not to say OR Other"=0), label = "What is your religion?")
# Create bins:
# For Q5 - understanding
admissions_data <- admissions_data %>%
mutate(
Q5_Theology = ifelse(Q5_Theology == 0, NA, Q5_Theology),
understanding_theology_bin = case_when(
Q5_Theology < 3 ~ "high",
Q5_Theology > 3 ~ "low",
Q5_Theology == 3 ~ "neutral",
TRUE ~ NA
) %>% factor(levels = c("low", "neutral", "high"))
)
# For Q5 - understanding
admissions_data <- admissions_data %>%
mutate(
Q5_Religious_Studies = ifelse(Q5_Religious_Studies == 0, NA, Q5_Religious_Studies),
understanding_religion_bin = case_when(
Q5_Religious_Studies < 3 ~ "high",
Q5_Religious_Studies > 3 ~ "low",
Q5_Religious_Studies == 3 ~ "neutral",
TRUE ~ NA
) %>% factor(levels = c("low", "neutral", "high"))
)
# For Q6 - interest
admissions_data <- admissions_data %>%
mutate(
Q6_Theology = ifelse(Q6_Theology == 0, NA, Q6_Theology),
interest_theology_bin = case_when(
Q6_Theology < 3 ~ "high",
Q6_Theology > 3 ~ "low",
Q6_Theology == 3 ~ "neutral",
TRUE ~ NA
) %>% factor(levels = c("low", "neutral", "high"))
)
# For Q6 - interest
admissions_data <- admissions_data %>%
mutate(
Q6_Religious_Studies = ifelse(Q6_Religious_Studies == 0, NA, Q6_Religious_Studies),
interest_religion_bin = case_when(
Q6_Religious_Studies < 3 ~ "high",
Q6_Religious_Studies > 3 ~ "low",
Q6_Religious_Studies == 3 ~ "neutral",
TRUE ~ NA
) %>% factor(levels = c("low", "neutral", "high"))
)
# For Q7 - employability prospects
admissions_data <- admissions_data %>%
mutate(
Q7_Theology = ifelse(Q7_Theology == 0, NA, Q7_Theology),
employability_optimism_theology_bin = case_when(
Q7_Theology < 3 ~ "high",
Q7_Theology > 3 ~ "low",
Q7_Theology == 3 ~ "neutral",
TRUE ~ NA
) %>% factor(levels = c("low", "neutral", "high"))
)
# For Q7 - employability prospects
admissions_data <- admissions_data %>%
mutate(
Q7_Religious_Studies = ifelse(Q7_Religious_Studies == 0, NA, Q7_Religious_Studies),
employability_optimism_religion_bin = case_when(
Q7_Religious_Studies < 3 ~ "high",
Q7_Religious_Studies > 3 ~ "low",
Q7_Religious_Studies == 3 ~ "neutral",
TRUE ~ NA
) %>% factor(levels = c("low", "neutral", "high"))
)
# For Q8 - employability prospects
admissions_data <- admissions_data %>%
mutate(
Q8 = ifelse(Q8 == 6, NA, Q8),
theology_for_bin = case_when(
Q8 < 3 ~ "religious",
Q8 > 3 ~ "all_people",
Q8 == 3 ~ "neutral",
TRUE ~ NA
) %>% factor(levels = c("all_people", "neutral", "religious"))
)
admissions_data <- admissions_data %>%
mutate(
Q9 = ifelse(Q9 == 6, NA, Q9),
religion_for_bin = case_when(
Q9 < 3 ~ "religious",
Q9 > 3 ~ "all_people",
Q9 == 3 ~ "neutral",
TRUE ~ NA
) %>% factor(levels = c("all_people", "neutral", "religious"))
)
# Q17 non-white / white ethnicity bins
admissions_data <- admissions_data %>%
mutate(
Q17 = ifelse(Q17 == 0, NA, Q17),
ethnicity_bin = case_when(
Q17 > 13 | Q17 < 18 ~ "white",
TRUE ~ "non-white"
) %>% factor(levels = c("white", "non-white"))
)
# Q18 non-religious / institutioal bins
admissions_data <- admissions_data %>%
mutate(
Q18 = ifelse(Q18 == 0, NA, Q18),
religion_bin = case_when(
Q18 %in% c(1, 2, 5, 17) ~ "non-religious",
TRUE ~ "religious"
) %>% factor(levels = c("non-religious", "religious"))
)
```
```{r correlations}
Q5_data <- select(admissions_data, Q5_Philosophy:Q5_Business)
cor(admissions_data$Q5_Philosophy, admissions_data$Q6_Philosophy)
```
# Basic demographic summary visualisations:
```{r demographic_summaries}
# 1. Calculate for age of respondent:
age <- factor(admissions_data$Q2), levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say"))
age_pie <- pie(table(admissions_data$Q2), col=coul3, cex = 0.8)
# JK note: adding in a bar chart here, as according to the interwebs it's (apparently?) more accurate to visualise than bar charts
ggplot(admissions_data, aes(factor(Q2))) +
geom_bar() +
geom_text(stat = "count", aes(label = after_stat(count)), vjust = -0.5) +
labs(title = "Respondent Age Distribution", x = "Age", y = "") +
scale_x_discrete(labels = labels(q2_labels))
# save to png file for reports
ggsave("figures/TSR_data_summaries_age.png")
```
```{r}
# 2. Calculate for year of study:
TSR_data_summaries_yos <- factor(TSR_data$MOSTRECENTyearofstudy, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9), labels = c("Year 11/S4/Year 12(NI)", "Year 12/S5/Year 13(NI)", "Year 13/S6/Year 14(NI)", "I am currently on a gap year", "I am currently on an undergraduate/HE college course", "I am in full-time employment", "I am unemployed", "Other", "Prefer not to say"))
data_summaries_yos <- ggplot(TSR_data, aes(TSR_data_summaries_yos)) + geom_bar()
data_summaries_yos + labs(title = "Respondent Most Recent Year of Study", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_yos.png")
```
```{r}
# 3. Gender identity:
TSR_data_summaries_gender <- factor(TSR_data$Gender, levels = c(1, 2, 3, 4), labels = c("Male", "Female", "I identify my gender in another way", "Prefer not to say"))
# JK note: using stringr here to wrap axis titles
TSR_data_summaries_gender <- str_wrap(TSR_data_summaries_gender, width = 10)
data_summaries_gender <- ggplot(TSR_data, aes(TSR_data_summaries_gender)) + geom_bar()
data_summaries_gender + labs(title = "Respondent gender self-identification", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_gender.png")
# 4. Ethnic self-identification:
TSR_data_summaries_ethnicity <- factor(TSR_data$Ethnicity, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ,18, 19), labels = c("Arab", "Indian", "Pakistani", "Bangladeshi", "Chinese", "Any other Asian background", "Black - African", "Black - Caribbean", "Any other Black background", "Mixed - White and Black Caribbean", "Mixed - White and Black African", "Mixed - White and Black Asian", "Any other Mixed/Multiple Ethnic background", "White - British", "White - Irish", "Gypsy or Irish Traveller", "Any other White background", "Other Ethnic group", "Prefer not to say"))
TSR_data_summaries_ethnicity <- str_wrap(TSR_data_summaries_ethnicity, width = 30)
data_summaries_ethnicity <- ggplot(TSR_data, aes(TSR_data_summaries_ethnicity)) + geom_bar() + xlab(NULL) + coord_flip()
data_summaries_ethnicity + labs(title = "Respondent ethnic self-identification", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_ethnicity.png")
# 5. Religion
TSR_data_summaries_religion <- factor(TSR_data$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other"))
# Adding a subset for charting out composition of group which specifically marked positive sentiments wrt/ theology or religious studies
TSR_data_theology_positive <- filter(TSR_data, InterestedinstudyingTheology >= 4 & InterestedinstudyingTheology != 0)
TSR_data_theology_negative <- filter(TSR_data, InterestedinstudyingTheology <= 2 & InterestedinstudyingTheology != 0)
TSR_data_rs_positive <- filter(TSR_data, InterestedinstudyingReligiousStudies >= 4 & InterestedinstudyingReligiousStudies != 0)
TSR_data_rs_negative <- filter(TSR_data, InterestedinstudyingReligiousStudies <= 2 & InterestedinstudyingReligiousStudies != 0)
TSR_data_theology_positive_summaries_religion <- factor(TSR_data_theology_positive$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other"))
TSR_data_theology_negative_summaries_religion <- factor(TSR_data_theology_negative$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other"))
TSR_data_rs_positive_summaries_religion <- factor(TSR_data_rs_positive$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other"))
TSR_data_rs_negative_summaries_religion <- factor(TSR_data_rs_negative$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other"))
TSR_data_theology_positive_summaries_ethnicity <- factor(TSR_data_theology_positive$Ethnicity, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ,18, 19), labels = c("Arab", "Indian", "Pakistani", "Bangladeshi", "Chinese", "Any other Asian background", "Black - African", "Black - Caribbean", "Any other Black background", "Mixed - White and Black Caribbean", "Mixed - White and Black African", "Mixed - White and Black Asian", "Any other Mixed/Multiple Ethnic background", "White - British", "White - Irish", "Gypsy or Irish Traveller", "Any other White background", "Other Ethnic group", "Prefer not to say"))
TSR_data_theology_positive_summaries_ethnicity <- str_wrap(TSR_data_theology_positive_summaries_ethnicity, width = 30)
TSR_data_rs_positive_summaries_ethnicity <- factor(TSR_data_rs_positive$Ethnicity, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ,18, 19), labels = c("Arab", "Indian", "Pakistani", "Bangladeshi", "Chinese", "Any other Asian background", "Black - African", "Black - Caribbean", "Any other Black background", "Mixed - White and Black Caribbean", "Mixed - White and Black African", "Mixed - White and Black Asian", "Any other Mixed/Multiple Ethnic background", "White - British", "White - Irish", "Gypsy or Irish Traveller", "Any other White background", "Other Ethnic group", "Prefer not to say"))
TSR_data_rs_positive_summaries_ethnicity <- str_wrap(TSR_data_rs_positive_summaries_ethnicity, width = 30)
TSR_data_theology_positive_summaries_gender <- factor(TSR_data_theology_positive$Gender, levels = c(1, 2, 3, 4), labels = c("Male", "Female", "I identify my gender in another way", "Prefer not to say"))
# JK note: using stringr here to wrap axis titles
TSR_data_theology_positive_summaries_gender <- str_wrap(TSR_data_theology_positive_summaries_gender, width = 10)
TSR_data_rs_positive_summaries_gender <- factor(TSR_data_rs_positive$Gender, levels = c(1, 2, 3, 4), labels = c("Male", "Female", "I identify my gender in another way", "Prefer not to say"))
# JK note: using stringr here to wrap axis titles
TSR_data_rs_positive_summaries_gender <- str_wrap(TSR_data_rs_positive_summaries_gender, width = 10)
# Calculate graphs
Religious_affiliation_bar <- ggplot(TSR_data, aes(TSR_data_summaries_religion)) + geom_bar() + coord_flip()
Religious_affiliation_bar + labs(title = "Respondent religious self-identification", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_religion.png")
# Additional graphs for theology/rs positive sentiment cohorts
# Theology - religious identification
# JK note: need to add percentages to each line, as per https://stackoverflow.com/questions/52373049/display-percentage-on-ggplot-bar-chart-in-r
Religious_affiliation_bar2 <- ggplot(TSR_data_theology_positive, aes(TSR_data_theology_positive_summaries_religion)) + geom_bar() + coord_flip()
Religious_affiliation_bar2 + labs(title = "Respondent religious self-identification, positive sentiment towards theology", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_religion_theologypositive.png")
# RS
Religious_affiliation_bar3 <- ggplot(TSR_data_rs_positive, aes(TSR_data_rs_positive_summaries_religion)) + geom_bar() + coord_flip()
Religious_affiliation_bar3 + labs(title = "Respondent religious self-identification, positive sentiment towards rs", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_religion_rspositive.png")
# Theology positive - gender
gender_bar2 <- ggplot(TSR_data_theology_positive, aes(TSR_data_theology_positive_summaries_gender)) + geom_bar()
gender_bar2 + labs(title = "Respondent gender self-identification, theology positive", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_gender2.png")
# Religion positive - gender
gender_bar3 <- ggplot(TSR_data_rs_positive, aes(TSR_data_rs_positive_summaries_gender)) + geom_bar()
gender_bar3 + labs(title = "Respondent gender self-identification, rs positive", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_gender3.png")
# Theology positive - ethnicity
data_summaries_theology_positive_ethnicity <- ggplot(TSR_data_theology_positive, aes(TSR_data_theology_positive_summaries_ethnicity)) + geom_bar() + xlab(NULL) + coord_flip()
data_summaries_theology_positive_ethnicity + labs(title = "Respondent ethnic self-identification - theology positive", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_ethnicity2.png")
# Religion positive - ethnicity
data_summaries_rs_positive_ethnicity <- ggplot(TSR_data_rs_positive, aes(TSR_data_rs_positive_summaries_ethnicity)) + geom_bar() + xlab(NULL) + coord_flip()
data_summaries_ethnicity + labs(title = "Respondent ethnic self-identification - religion positive", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_summaries_ethnicity3.png")
```
# Visualisations of LIKERT responses (RH):
- For questions Q6 (subject interest) / Q5 (subject knowledge) / Q7 employability prospects:
- visualisation as summaries for all subjects LIKERT data as stacked bar chart (colours for bar segments from cool to warm)
```{r Visualization by Subject}
## Files have been reverse scored - Higher score now indicates more agreement
#Q5 Subject Knowledge/Understanding
subject_data$Subject <- factor(subject_data$Subject, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), labels = c("Philosophy", "Sociology", "Psychology", "History", "Ethics", "Theology", "Religious Studies", "Politics", "English", "Math", "Computer Science", "Business"))
understanding_mean <- aggregate(Understanding ~ Subject, data = subject_data, mean)
understanding_bar <- ggplot(understanding_mean, aes(x = Subject, y = Understanding)) + stat_summary(fun = "mean", geom = "bar") + coord_flip()
understanding_bar + labs(title = "I have a good understanding of what this subject involves?", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_subject_understanding.png")
#Q6 Subject Interest
interest_mean <- aggregate(Interest ~ Subject, data = subject_data, mean)
interest_bar <- ggplot(interest_mean, aes(x = Subject, y = Interest)) + stat_summary(fun = "mean", geom = "bar") + coord_flip()
interest_bar + labs(title = "I would be interested in studying this subject at University?", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_subject_interest.png")
#Q7 Employability Prospects
employability_mean <- aggregate(Employability ~ Subject, data = subject_data, mean)
employability_bar <- ggplot(employability_mean, aes(x = Subject, y = Employability)) + stat_summary(fun = "mean", geom = "bar") + coord_flip()
employability_bar + labs(title = "please rate ... employability prospects", x = "", y = "")
# save to png file for reports
ggsave("figures/TSR_data_subject_employability.png")
```
```{r}
### Likert Stacked Bar Chart ###
# Take selection of data re: understanding
Understanding_data <- TSR_data[, 6:17]
# Convert each column to factors
Understanding_data$GoodunderstandingofPhilosophy = factor(Understanding_data$GoodunderstandingofPhilosophy,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Understanding_data$GoodunderstandingofSociology = factor(Understanding_data$GoodunderstandingofSociology,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Understanding_data$GoodunderstandingofPsychology = factor(Understanding_data$GoodunderstandingofPsychology,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Understanding_data$GoodunderstandingofHistory = factor(Understanding_data$GoodunderstandingofHistory,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Understanding_data$GoodunderstandingofEthics = factor(Understanding_data$GoodunderstandingofEthics,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Understanding_data$GoodunderstandingofTheology = factor(Understanding_data$GoodunderstandingofTheology,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Understanding_data$GoodunderstandingofReligiousStudies = factor(Understanding_data$GoodunderstandingofReligiousStudies,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Understanding_data$GoodunderstandingofPolitics = factor(Understanding_data$GoodunderstandingofPolitics,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Understanding_data$GoodunderstandingofEnglish = factor(Understanding_data$GoodunderstandingofEnglish,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Understanding_data$GoodunderstandingofMath = factor(Understanding_data$GoodunderstandingofMath,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Understanding_data$GoodunderstandingofComputerScience = factor(Understanding_data$GoodunderstandingofComputerScience,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Understanding_data$GoodunderstandingofBusiness = factor(Understanding_data$GoodunderstandingofBusiness,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
names(Understanding_data) <- c("Philosophy", "Sociology", "Psychology", "History", "Ethics", "Theology", "Religious Studies", "Politics", "English", "Math", "Computer Science", "Business")
str(Understanding_data)
levels(Understanding_data)
summary(Understanding_data)
likert_test_understand <- likert(Understanding_data)
Understanding_data <- Q5_data
likert_test_understand <- likert(Q5_data)
plot(likert_test_understand)
# save to png file for reports
ggsave("figures/understanding_likert.png")
```
```{r}
Interest_data <- TSR_data[, 18:29]
# Convert each column to factors
Interest_data$InterestinstudyingPhilosophy = factor(Interest_data$InterestinstudyingPhilosophy,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Interest_data$InterestinstudyingSociaology = factor(Interest_data$InterestinstudyingSociaology,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Interest_data$InterestedinStudyingPsychology = factor(Interest_data$InterestedinStudyingPsychology,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Interest_data$InterestedinstudyingHistory = factor(Interest_data$InterestedinstudyingHistory,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Interest_data$InterestedinstudyingEthics = factor(Interest_data$InterestedinstudyingEthics,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Interest_data$InterestedinstudyingTheology = factor(Interest_data$InterestedinstudyingTheology,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Interest_data$InterestedinstudyingReligiousStudies = factor(Interest_data$InterestedinstudyingReligiousStudies,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Interest_data$InterestedinstudyingPolitics = factor(Interest_data$InterestedinstudyingPolitics,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Interest_data$InterestedinstudyingEnglish = factor(Interest_data$InterestedinstudyingEnglish,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Interest_data$InterestedinstudyingMath = factor(Interest_data$InterestedinstudyingMath,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Interest_data$InterestedinstudyingComputerScience = factor(Interest_data$InterestedinstudyingComputerScience,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Interest_data$InterestedinstudyingBusiness = factor(Interest_data$InterestedinstudyingBusiness,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
names(Interest_data) <- c("Philosophy", "Sociology", "Psychology", "History", "Ethics", "Theology", "Religious Studies", "Politics", "English", "Math", "Computer Science", "Business")
likert_test_interest <- likert(Interest_data)
plot(likert_test_interest)
# save to png file for reports
ggsave("figures/interest_likert.png")
Employability_data <- TSR_data[, 30:41]
# Convert each column to factors
Employability_data$Philosophyemployability = factor(Employability_data$Philosophyemployability,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Employability_data$Sociologyemployability = factor(Employability_data$Sociologyemployability,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Employability_data$PsychologyEmployability = factor(Employability_data$PsychologyEmployability,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Employability_data$Historyemployability = factor(Employability_data$Historyemployability,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Employability_data$Ethicsemployability = factor(Employability_data$Ethicsemployability,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Employability_data$Theologyemployability = factor(Employability_data$Theologyemployability,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Employability_data$ReligiousStudiesemployability = factor(Employability_data$ReligiousStudiesemployability,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Employability_data$Politicsemployability = factor(Employability_data$Politicsemployability,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Employability_data$Englishemployability = factor(Employability_data$Englishemployability,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Employability_data$Mathemployability = factor(Employability_data$Mathemployability,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Employability_data$ComputerScienceemployability = factor(Employability_data$ComputerScienceemployability,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
Employability_data$Businessemployability = factor(Employability_data$Businessemployability,
ordered = TRUE,
levels = c("1", "2", "3", "4", "5")
)
names(Employability_data) <- c("Philosophy", "Sociology", "Psychology", "History", "Ethics", "Theology", "Religious Studies", "Politics", "English", "Math", "Computer Science", "Business")
likert_test_employability <- likert(Employability_data)
plot(likert_test_employability)
# save to png file for reports
ggsave("figures/employability_likert.png")
```
- separate visualisation of summary data as pie chart only for 4 key subjects: Philosophy, Ethics, Theology, Religious Studies, but with data represented as aggregated "Positive" / "Negative" responses
```{r Visualization for 4 Key Subjects}
## Subset by "Positive" / "Negative"
# jk note: I've filled in the other fields just for fun
keysubjects_data <- subject_data[subject_data$Subject == "Philosophy" | subject_data$Subject == "Ethics" | subject_data$Subject == "Theology" | subject_data$Subject == "Religious Studies" | subject_data$Subject == "Sociology" | subject_data$Subject == "Psychology" | subject_data$Subject == "History" | subject_data$Subject == "Politics" | subject_data$Subject == "English" | subject_data$Subject == "Math" | subject_data$Subject == "Computer Science" | subject_data$Subject == "Business", ]
recode_interest <- ifelse(2 <= keysubjects_data$Interest & keysubjects_data$Interest >=4, "Positive", "Negative")
keysubjects_data <- cbind(keysubjects_data, recode_interest)
keysubjects_data$recode_interest <- factor(keysubjects_data$recode_interest)
interest_table <- table(keysubjects_data$recode_interest, keysubjects_data$Subject)
# export table to csv
write.csv(interest_table, "derivedData/interest_table.csv", row.names=TRUE)
```
- subsetted visualisations of responses with separate subsetting by response to Q8-9, Q18, Q17, Q16
- For question Q8 + Q9 (for religious people)
- visualisation summary of responses
- show subsetted visualisations of responses by response to, Q18, Q17, Q16, Q13, Q14
- For responses to Q10-12 (what subjects are involved in...):
- represent answer counts as descending bar chart for each Q
- subset answers by Q6 (positive / negative) and Q5 (positive / negative)
# Correlation testing:
- For Q6 (subject interest) / Q5 (subject knowledge) / Q7 employability prospects, test for nature / strength of correlation with responses to:
- Q8-9 responses
- Q18 responses
- Q17
```{r Q6 Correlations - Subject Interest}
#Q8-9 (8 - Theology as subject for religious people; 9 - Religion as study for religious people)
# This would be suitable for correlation
#Q17 (Ethnicity)
# This would be categorical, so ANOVA
#Q18 (Religion)
# This would also be categorical, so ANOVA
```
```{r Q5 Correlations - Subject Knowledge}
#Q8-9 (8 - Theology as subject for religious people; 9 - Religion as study for religious people)
# This would be suitable for correlation
#Q17 (Ethnicity)
# This would be categorical, so ANOVA
#Q18 (Religion)
# This would also be categorical, so ANOVA
```
```{r Q7 Correlations - Employability}
#Q8-9 (8 - Theology as subject for religious people; 9 - Religion as study for religious people)
# This would be suitable for correlation
#Q17 (Ethnicity)
# This would be categorical, so ANOVA
#Q18 (Religion)
# This would also be categorical, so ANOVA
```
```{r testing fun}
#testcor_data <- subject_data[subject_data$Subject == "Psychology" | subject_data$Subject == "Theology", ]
#t.test(Interest ~ Subject, data = testcor_data)
# testsubset <- TSR_data[TSR_data$Interested.in.Studying.Psychology < 3 & TSR_data$Interested.in.Studying.Psychology != 0, ]
# as.numeric(testsubset$Interested.in.studying.Theology)
# mean(testsubset$Interested.in.studying.Theology, na.rm = TRUE)
#
# mean(as.numeric(testsubset$Interested.in.studying.Theology), na.rm = TRUE)
#
# as.numeric(testsubset$Interested.in.studying.Religious.Studies)
# mean(testsubset$Interested.in.studying.Religious.Studies, na.rm = TRUE)
#
# testsubset2 <- TSR_data[TSR_data$Interested.in.Studying.Psychology > 3, ]
# mean(as.numeric(testsubset2$Interested.in.studying.Theology), na.rm = TRUE)
# mean(as.numeric(testsubset2$Interested.in.studying.Religious.Studies), na.rm = TRUE)
```
## Mean Interest in Theology and Religious Studies by High/Low Subject Interest
```{r Philosophy}
# Base mean:
mean(as.numeric(TSR_data$InterestedinstudyingTheology), na.rm = TRUE)
mean(as.numeric(TSR_data$InterestedinstudyingReligiousStudies), na.rm = TRUE)
mean(as.numeric(TSR_data$InterestinstudyingPhilosophy), na.rm = TRUE)
mean(as.numeric(TSR_data$InterestedinStudyingPsychology), na.rm = TRUE)
### Philosophy ###
Philos_subset_Low <- TSR_data[TSR_data$InterestinstudyingPhilosophy < 3 & TSR_data$InterestinstudyingPhilosophy != 0, ]
Philos_subset_High <- TSR_data[TSR_data$InterestinstudyingPhilosophy > 3, ]
## Theology Interest
#Low interest in Philosophy
mean(as.numeric(Philos_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
#High interest in Philosophy
mean(as.numeric(Philos_subset_High$InterestedinstudyingTheology), na.rm = TRUE)
## Religious Studies Interest
#Low interest in Philosophy
mean(as.numeric(Philos_subset_Low$InterestedinstudyingReligiousStudies), na.rm = TRUE)
#High interest in Philosophy
mean(as.numeric(Philos_subset_High$InterestedinstudyingReligiousStudies), na.rm = TRUE)
```
```{r Sociology}
### Sociology ###
Soc_subset_Low <- TSR_data[TSR_data$InterestinstudyingSociaology < 3 & TSR_data$InterestinstudyingSociaology != 0, ]
Soc_subset_High <- TSR_data[TSR_data$InterestinstudyingSociaology > 3, ]
## Theology Interest
#Low interest in Sociology
mean(as.numeric(Soc_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
#High interest in Sociology
mean(as.numeric(Soc_subset_High$InterestedinstudyingTheology), na.rm = TRUE)
## Religious Studies Interest
#Low interest in Sociology
mean(as.numeric(Soc_subset_Low$InterestedinstudyingReligiousStudies), na.rm = TRUE)
#High interest in Sociology
mean(as.numeric(Soc_subset_High$InterestedinstudyingReligiousStudies), na.rm = TRUE)
```
```{r Psychology}
### Psychology ###
Psych_subset_Low <- TSR_data[TSR_data$InterestedinStudyingPsychology < 3 & TSR_data$InterestedinStudyingPsychology != 0, ]
Psych_subset_High <- TSR_data[TSR_data$InterestedinStudyingPsychology > 3, ]
## Theology Interest
#Low interest in Psychology
mean(as.numeric(Psych_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
#High interest in Psychology
mean(as.numeric(Psych_subset_High$InterestedinstudyingTheology), na.rm = TRUE)
## Religious Studies Interest
#Low interest in Psychology
mean(as.numeric(Psych_subset_Low$InterestedinstudyingReligiousStudies), na.rm = TRUE)
#High interest in Psychology
mean(as.numeric(Psych_subset_High$InterestedinstudyingReligiousStudies), na.rm = TRUE)
```
```{r History}
### History ###
Hist_subset_Low <- TSR_data[TSR_data$InterestedinstudyingHistory < 3 & TSR_data$InterestedinstudyingHistory != 0, ]
Hist_subset_High <- TSR_data[TSR_data$InterestedinstudyingHistory > 3, ]
## Theology Interest
#Low interest in History
mean(as.numeric(Hist_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
#High interest in History
mean(as.numeric(Hist_subset_High$InterestedinstudyingTheology), na.rm = TRUE)
## Religious Studies Interest
#Low interest in History
mean(as.numeric(Hist_subset_Low$InterestedinstudyingReligiousStudies), na.rm = TRUE)
#High interest in History
mean(as.numeric(Hist_subset_High$InterestedinstudyingReligiousStudies), na.rm = TRUE)
```
```{r Ethics}
### Ethics ###
Ethics_subset_Low <- TSR_data[TSR_data$InterestedinstudyingEthics < 3 & TSR_data$InterestedinstudyingEthics != 0, ]
Ethics_subset_High <- TSR_data[TSR_data$InterestedinstudyingEthics > 3, ]
## Theology Interest
#Low interest in Ethics
mean(as.numeric(Ethics_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
#High interest in Ethics
mean(as.numeric(Ethics_subset_High$InterestedinstudyingTheology), na.rm = TRUE)
## Religious Studies Interest
#Low interest in Ethics
mean(as.numeric(Ethics_subset_Low$InterestedinstudyingReligiousStudies), na.rm = TRUE)
#High interest in Ethics
mean(as.numeric(Ethics_subset_High$InterestedinstudyingReligiousStudies), na.rm = TRUE)
```
```{r Politics}
### Politics ###
Polit_subset_Low <- TSR_data[TSR_data$InterestedinstudyingPolitics < 3 & TSR_data$InterestedinstudyingPolitics != 0, ]
Polit_subset_High <- TSR_data[TSR_data$InterestedinstudyingPolitics > 3, ]
## Theology Interest
#Low interest in Politics
mean(as.numeric(Polit_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
#High interest in Politics
mean(as.numeric(Polit_subset_High$InterestedinstudyingTheology), na.rm = TRUE)
## Religious Studies Interest
#Low interest in Politics
mean(as.numeric(Polit_subset_Low$InterestedinstudyingReligiousStudies), na.rm = TRUE)
#High interest in Politics
mean(as.numeric(Polit_subset_High$InterestedinstudyingReligiousStudies), na.rm = TRUE)
```
```{r English}
### English ###
Eng_subset_Low <- TSR_data[TSR_data$InterestedinstudyingEnglish < 3 & TSR_data$InterestedinstudyingEnglish != 0, ]
Eng_subset_High <- TSR_data[TSR_data$InterestedinstudyingEnglish > 3, ]
## Theology Interest
#Low interest in English
mean(as.numeric(Eng_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
#High interest in English
mean(as.numeric(Eng_subset_High$InterestedinstudyingTheology), na.rm = TRUE)
## Religious Studies Interest
#Low interest in English
mean(as.numeric(Eng_subset_Low$InterestedinstudyingReligiousStudies), na.rm = TRUE)
#High interest in English
mean(as.numeric(Eng_subset_High$InterestedinstudyingReligiousStudies), na.rm = TRUE)
```
```{r Math}
### Math ###
Math_subset_Low <- TSR_data[TSR_data$InterestedinstudyingMath < 3 & TSR_data$InterestedinstudyingMath != 0, ]
Math_subset_High <- TSR_data[TSR_data$InterestedinstudyingMath > 3, ]
## Theology Interest
#Low interest in Math
mean(as.numeric(Math_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
#High interest in Math
mean(as.numeric(Math_subset_High$InterestedinstudyingTheology), na.rm = TRUE)
## Religious Studies Interest
#Low interest in Math
mean(as.numeric(Math_subset_Low$InterestedinstudyingReligiousStudies), na.rm = TRUE)
#High interest in Math
mean(as.numeric(Math_subset_High$InterestedinstudyingReligiousStudies), na.rm = TRUE)
```
```{r Computer Science}
### Computer Science ###
CompSci_subset_Low <- TSR_data[TSR_data$InterestedinstudyingComputerScience < 3 & TSR_data$InterestedinstudyingComputerScience != 0, ]
CompSci_subset_High <- TSR_data[TSR_data$InterestedinstudyingComputerScience > 3, ]
## Theology Interest
#Low interest in Computer Science
mean(as.numeric(CompSci_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
#High interest in Computer Science
mean(as.numeric(CompSci_subset_High$InterestedinstudyingTheology), na.rm = TRUE)
## Religious Studies Interest
#Low interest in Computer Science
mean(as.numeric(CompSci_subset_Low$InterestedinstudyingReligiousStudies), na.rm = TRUE)
#High interest in Computer Science
mean(as.numeric(CompSci_subset_High$InterestedinstudyingReligiousStudies), na.rm = TRUE)
```
```{r Business}
### Business ###
Busi_subset_Low <- TSR_data[TSR_data$InterestedinstudyingBusiness < 3 & TSR_data$InterestedinstudyingBusiness != 0, ]
Busi_subset_High <- TSR_data[TSR_data$InterestedinstudyingBusiness > 3, ]
## Theology Interest
#Low interest in Business
mean(as.numeric(Busi_subset_Low$InterestedinstudyingTheology), na.rm = TRUE)
#High interest in Business
mean(as.numeric(Busi_subset_High$InterestedinstudyingTheology), na.rm = TRUE)
## Religious Studies Interest
#Low interest in Business
mean(as.numeric(Busi_subset_Low$InterestedinstudyingReligiousStudies), na.rm = TRUE)
#High interest in Business
mean(as.numeric(Busi_subset_High$InterestedinstudyingReligiousStudies), na.rm = TRUE)
```
## Mean Knowledge in Theology and Religious Studies by High/Low Subject Knowledge
```{r Philosophy}
# Base calculations
mean(as.numeric(TSR_data$GoodunderstandingofTheology), na.rm = TRUE)
mean(as.numeric(TSR_data$GoodunderstandingofReligiousStudies), na.rm = TRUE)
mean(as.numeric(TSR_data$GoodunderstandingofPhilosophy), na.rm = TRUE)
mean(as.numeric(TSR_data$GoodunderstandingofPsychology), na.rm = TRUE)
mean(as.numeric(TSR_data$GoodunderstandingofEnglish), na.rm = TRUE)
mean(as.numeric(TSR_data$GoodunderstandingofMath), na.rm = TRUE)
### Philosophy ###
# Low understanding of philosophy cohort
Philos_subset_Low <- TSR_data[TSR_data$GoodunderstandingofPhilosophy < 3 & TSR_data$GoodunderstandingofPhilosophy != 0, ]
# High understanding of philosophy cohort
Philos_subset_High <- TSR_data[TSR_data$GoodunderstandingofPhilosophy > 3, ]
## Theology Knowledge
#Low knowledge in Philosophy
mean(as.numeric(Philos_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
#High knowledge in Philosophy
mean(as.numeric(Philos_subset_High$GoodunderstandingofTheology), na.rm = TRUE)
## Religious Studies Knowledge
#Low knowledge in Philosophy
mean(as.numeric(Philos_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE)
#High knowledge in Philosophy
mean(as.numeric(Philos_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE)
```
```{r Sociology}
### Sociology ###
Soc_subset_Low <- TSR_data[TSR_data$GoodunderstandingofSociology < 3 & TSR_data$GoodunderstandingofSociology != 0, ]
Soc_subset_High <- TSR_data[TSR_data$GoodunderstandingofSociology > 3, ]
## Theology knowledge
#Low knowledge in Sociology
mean(as.numeric(Soc_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
#High knowledge in Sociology
mean(as.numeric(Soc_subset_High$GoodunderstandingofTheology), na.rm = TRUE)
## Religious Studies knowledge
#Low knowledge in Sociology
mean(as.numeric(Soc_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE)
#High knowledge in Sociology
mean(as.numeric(Soc_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE)
```
```{r Psychology}
### Psychology ###
Psych_subset_Low <- TSR_data[TSR_data$GoodunderstandingofPsychology < 3 & TSR_data$GoodunderstandingofPsychology != 0, ]
Psych_subset_High <- TSR_data[TSR_data$GoodunderstandingofPsychology > 3, ]
## Theology knowledge
#Low knowledge in Psychology
mean(as.numeric(Psych_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
#High knowledge in Psychology
mean(as.numeric(Psych_subset_High$GoodunderstandingofTheology), na.rm = TRUE)
## Religious Studies knowledge
#Low knowledge in Psychology
mean(as.numeric(Psych_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE)
#High knowledge in Psychology
mean(as.numeric(Psych_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE)
```
```{r History}
### History ###
Hist_subset_Low <- TSR_data[TSR_data$GoodunderstandingofHistory < 3 & TSR_data$GoodunderstandingofHistory != 0, ]
Hist_subset_High <- TSR_data[TSR_data$GoodunderstandingofHistory > 3, ]
## Theology knowledge
#Low knowledge in History
mean(as.numeric(Hist_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
#High knowledge in History
mean(as.numeric(Hist_subset_High$GoodunderstandingofTheology), na.rm = TRUE)
## Religious Studies knowledge
#Low knowledge in History
mean(as.numeric(Hist_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE)
#High knowledge in History
mean(as.numeric(Hist_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE)
```
```{r Ethics}
### Ethics ###
Ethics_subset_Low <- TSR_data[TSR_data$GoodunderstandingofEthics < 3 & TSR_data$GoodunderstandingofEthics != 0, ]
Ethics_subset_High <- TSR_data[TSR_data$GoodunderstandingofEthics > 3, ]
## Theology knowledge
#Low knowledge in Ethics
mean(as.numeric(Ethics_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
#High knowledge in Ethics
mean(as.numeric(Ethics_subset_High$GoodunderstandingofTheology), na.rm = TRUE)
## Religious Studies knowledge
#Low knowledge in Ethics
mean(as.numeric(Ethics_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE)
#High knowledge in Ethics
mean(as.numeric(Ethics_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE)
```
```{r Politics}
### Politics ###
Polit_subset_Low <- TSR_data[TSR_data$GoodunderstandingofPolitics < 3 & TSR_data$GoodunderstandingofPolitics != 0, ]
Polit_subset_High <- TSR_data[TSR_data$GoodunderstandingofPolitics > 3, ]
## Theology knowledge
#Low knowledge in Politics
mean(as.numeric(Polit_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
#High knowledge in Politics
mean(as.numeric(Polit_subset_High$GoodunderstandingofTheology), na.rm = TRUE)
## Religious Studies knowledge
#Low knowledge in Politics
mean(as.numeric(Polit_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE)
#High knowledge in Politics
mean(as.numeric(Polit_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE)
```
```{r English}
### English ###
Eng_subset_Low <- TSR_data[TSR_data$GoodunderstandingofEnglish < 3 & TSR_data$GoodunderstandingofEnglish != 0, ]
Eng_subset_High <- TSR_data[TSR_data$GoodunderstandingofEnglish > 3, ]
## Theology knowledge
#Low knowledge in English
mean(as.numeric(Eng_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
#High knowledge in English
mean(as.numeric(Eng_subset_High$GoodunderstandingofTheology), na.rm = TRUE)
## Religious Studies knowledge
#Low knowledge in English
mean(as.numeric(Eng_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE)
#High knowledge in English
mean(as.numeric(Eng_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE)
```
```{r Math}
### Math ###
Math_subset_Low <- TSR_data[TSR_data$GoodunderstandingofMath < 3 & TSR_data$GoodunderstandingofMath != 0, ]
Math_subset_High <- TSR_data[TSR_data$GoodunderstandingofMath > 3, ]
## Theology knowledge
#Low knowledge in Math
mean(as.numeric(Math_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
#High knowledge in Math
mean(as.numeric(Math_subset_High$GoodunderstandingofTheology), na.rm = TRUE)
## Religious Studies knowledge
#Low knowledge in Math
mean(as.numeric(Math_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE)
#High knowledge in Math
mean(as.numeric(Math_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE)
```
```{r Computer Science}
### Computer Science ###
CompSci_subset_Low <- TSR_data[TSR_data$GoodunderstandingofComputerScience < 3 & TSR_data$GoodunderstandingofComputerScience != 0, ]
CompSci_subset_High <- TSR_data[TSR_data$GoodunderstandingofComputerScience > 3, ]
## Theology knowledge
#Low knowledge in Computer Science
mean(as.numeric(CompSci_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
#High knowledge in Computer Science
mean(as.numeric(CompSci_subset_High$GoodunderstandingofTheology), na.rm = TRUE)
## Religious Studies knowledge
#Low knowledge in Computer Science
mean(as.numeric(CompSci_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE)
#High knowledge in Computer Science
mean(as.numeric(CompSci_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE)
```
```{r Business}
### Business ###
Busi_subset_Low <- TSR_data[TSR_data$GoodunderstandingofBusiness < 3 & TSR_data$GoodunderstandingofBusiness != 0, ]
Busi_subset_High <- TSR_data[TSR_data$GoodunderstandingofBusiness > 3, ]
## Theology knowledge
#Low knowledge in Business
mean(as.numeric(Busi_subset_Low$GoodunderstandingofTheology), na.rm = TRUE)
#High knowledge in Business
mean(as.numeric(Busi_subset_High$GoodunderstandingofTheology), na.rm = TRUE)
## Religious Studies knowledge
#Low knowledge in Business
mean(as.numeric(Busi_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE)
#High knowledge in Business
mean(as.numeric(Busi_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE)
```
## Mean Employability in Theology and Religious Studies by High/Low Subject Employability
```{r Philosophy}
# Base Calculations
mean(as.numeric(TSR_data$Theologyemployability), na.rm = TRUE)
mean(as.numeric(TSR_data$ReligiousStudiesemployability), na.rm = TRUE)
mean(as.numeric(TSR_data$Philosophyemployability), na.rm = TRUE)
mean(as.numeric(TSR_data$PsychologyEmployability), na.rm = TRUE)
mean(as.numeric(TSR_data$Englishemployability), na.rm = TRUE)
mean(as.numeric(TSR_data$Mathemployability), na.rm = TRUE)
mean(as.numeric(TSR_data$Businessemployability), na.rm = TRUE)
mean(as.numeric(TSR_data$ComputerScienceemployability), na.rm = TRUE)
### Philosophy ###
Philos_subset_Low <- TSR_data[TSR_data$Philosophyemployability < 3 & TSR_data$Philosophyemployability != 0, ]
Philos_subset_High <- TSR_data[TSR_data$Philosophyemployability > 3, ]
## Theology employability
#Low employability in Philosophy
mean(as.numeric(Philos_subset_Low$Theologyemployability), na.rm = TRUE)
#High employability in Philosophy
mean(as.numeric(Philos_subset_High$Theologyemployability), na.rm = TRUE)
## Religious Studies employability
#Low employability in Philosophy
mean(as.numeric(Philos_subset_Low$ReligiousStudiesemployability), na.rm = TRUE)
#High employability in Philosophy
mean(as.numeric(Philos_subset_High$ReligiousStudiesemployability), na.rm = TRUE)
```
```{r Sociology}
### Sociology ###
Soc_subset_Low <- TSR_data[TSR_data$Sociologyemployability < 3 & TSR_data$Sociologyemployability != 0, ]
Soc_subset_High <- TSR_data[TSR_data$Sociologyemployability > 3, ]
## Theology employability
#Low employability in Sociology
mean(as.numeric(Soc_subset_Low$Theologyemployability), na.rm = TRUE)
#High employability in Sociology
mean(as.numeric(Soc_subset_High$Theologyemployability), na.rm = TRUE)
## Religious Studies employability
#Low employability in Sociology
mean(as.numeric(Soc_subset_Low$ReligiousStudiesemployability), na.rm = TRUE)
#High employability in Sociology
mean(as.numeric(Soc_subset_High$ReligiousStudiesemployability), na.rm = TRUE)
```
```{r Psychology}
### Psychology ###
Psych_subset_Low <- TSR_data[TSR_data$PsychologyEmployability < 3 & TSR_data$PsychologyEmployability != 0, ]
Psych_subset_High <- TSR_data[TSR_data$PsychologyEmployability > 3, ]
## Theology employability
#Low employability in Psychology
mean(as.numeric(Psych_subset_Low$Theologyemployability), na.rm = TRUE)
#High employability in Psychology
mean(as.numeric(Psych_subset_High$Theologyemployability), na.rm = TRUE)
## Religious Studies employability
#Low employability in Psychology
mean(as.numeric(Psych_subset_Low$ReligiousStudiesemployability), na.rm = TRUE)
#High employability in Psychology
mean(as.numeric(Psych_subset_High$ReligiousStudiesemployability), na.rm = TRUE)
```
```{r History}
### History ###
Hist_subset_Low <- TSR_data[TSR_data$Historyemployability < 3 & TSR_data$Historyemployability != 0, ]
Hist_subset_High <- TSR_data[TSR_data$Historyemployability > 3, ]
## Theology employability
#Low employability in History
mean(as.numeric(Hist_subset_Low$Theologyemployability), na.rm = TRUE)
#High employability in History
mean(as.numeric(Hist_subset_High$Theologyemployability), na.rm = TRUE)
## Religious Studies employability
#Low employability in History
mean(as.numeric(Hist_subset_Low$ReligiousStudiesemployability), na.rm = TRUE)
#High employability in History
mean(as.numeric(Hist_subset_High$ReligiousStudiesemployability), na.rm = TRUE)
```
```{r Ethics}
### Ethics ###
Ethics_subset_Low <- TSR_data[TSR_data$Ethicsemployability < 3 & TSR_data$Ethicsemployability != 0, ]
Ethics_subset_High <- TSR_data[TSR_data$Ethicsemployability > 3, ]
## Theology employability
#Low employability in Ethics
mean(as.numeric(Ethics_subset_Low$Theologyemployability), na.rm = TRUE)
#High employability in Ethics
mean(as.numeric(Ethics_subset_High$Theologyemployability), na.rm = TRUE)
## Religious Studies employability
#Low employability in Ethics
mean(as.numeric(Ethics_subset_Low$ReligiousStudiesemployability), na.rm = TRUE)
#High employability in Ethics
mean(as.numeric(Ethics_subset_High$ReligiousStudiesemployability), na.rm = TRUE)
```
```{r Politics}
### Politics ###
Polit_subset_Low <- TSR_data[TSR_data$Politicsemployability < 3 & TSR_data$Politicsemployability != 0, ]
Polit_subset_High <- TSR_data[TSR_data$Politicsemployability > 3, ]
## Theology employability
#Low employability in Politics
mean(as.numeric(Polit_subset_Low$Theologyemployability), na.rm = TRUE)
#High employability in Politics
mean(as.numeric(Polit_subset_High$Theologyemployability), na.rm = TRUE)
## Religious Studies employability
#Low employability in Politics
mean(as.numeric(Polit_subset_Low$ReligiousStudiesemployability), na.rm = TRUE)
#High employability in Politics
mean(as.numeric(Polit_subset_High$ReligiousStudiesemployability), na.rm = TRUE)
```
```{r English}
### English ###
Eng_subset_Low <- TSR_data[TSR_data$Englishemployability < 3 & TSR_data$Englishemployability != 0, ]
Eng_subset_High <- TSR_data[TSR_data$Englishemployability > 3, ]
## Theology employability
#Low employability in English
mean(as.numeric(Eng_subset_Low$Theologyemployability), na.rm = TRUE)
#High employability in English
mean(as.numeric(Eng_subset_High$Theologyemployability), na.rm = TRUE)
## Religious Studies employability
#Low employability in English
mean(as.numeric(Eng_subset_Low$ReligiousStudiesemployability), na.rm = TRUE)
#High employability in English
mean(as.numeric(Eng_subset_High$ReligiousStudiesemployability), na.rm = TRUE)
```
```{r Math}
### Math ###
Math_subset_Low <- TSR_data[TSR_data$Mathemployability < 3 & TSR_data$Mathemployability != 0, ]
Math_subset_High <- TSR_data[TSR_data$Mathemployability > 3, ]
## Theology employability
#Low employability in Math
mean(as.numeric(Math_subset_Low$Theologyemployability), na.rm = TRUE)
#High employability in Math
mean(as.numeric(Math_subset_High$Theologyemployability), na.rm = TRUE)
## Religious Studies employability
#Low employability in Math
mean(as.numeric(Math_subset_Low$ReligiousStudiesemployability), na.rm = TRUE)
#High employability in Math
mean(as.numeric(Math_subset_High$ReligiousStudiesemployability), na.rm = TRUE)
```
```{r Computer Science}
### Computer Science ###
CompSci_subset_Low <- TSR_data[TSR_data$ComputerScienceemployability < 3 & TSR_data$ComputerScienceemployability != 0, ]
CompSci_subset_High <- TSR_data[TSR_data$ComputerScienceemployability > 3, ]
## Theology employability
#Low employability in Computer Science
mean(as.numeric(CompSci_subset_Low$Theologyemployability), na.rm = TRUE)
#High employability in Computer Science
mean(as.numeric(CompSci_subset_High$Theologyemployability), na.rm = TRUE)
## Religious Studies employability
#Low employability in Computer Science
mean(as.numeric(CompSci_subset_Low$ReligiousStudiesemployability), na.rm = TRUE)
#High employability in Computer Science
mean(as.numeric(CompSci_subset_High$ReligiousStudiesemployability), na.rm = TRUE)
```
```{r Business}
### Business ###
Busi_subset_Low <- TSR_data[TSR_data$Businessemployability < 3 & TSR_data$Businessemployability != 0, ]
Busi_subset_High <- TSR_data[TSR_data$Businessemployability > 3, ]
## Theology employability
#Low employability in Business
mean(as.numeric(Busi_subset_Low$Theologyemployability), na.rm = TRUE)
#High employability in Business
mean(as.numeric(Busi_subset_High$Theologyemployability), na.rm = TRUE)
## Religious Studies employability
#Low employability in Business
mean(as.numeric(Busi_subset_Low$ReligiousStudiesemployability), na.rm = TRUE)
#High employability in Business
mean(as.numeric(Busi_subset_High$ReligiousStudiesemployability), na.rm = TRUE)
```