mirror of
https://github.com/kidwellj/trs_admissions_survey2021.git
synced 2024-10-31 22:22:21 +00:00
tiding a wee bit
This commit is contained in:
parent
f10c4b57fd
commit
3dbc16246a
|
@ -5,31 +5,13 @@ output: html_document
|
||||||
|
|
||||||
```{r setup, include=FALSE}
|
```{r setup, include=FALSE}
|
||||||
knitr::opts_chunk$set(echo = TRUE)
|
knitr::opts_chunk$set(echo = TRUE)
|
||||||
|
library(ggplot2)
|
||||||
```
|
```
|
||||||
|
|
||||||
## R Markdown
|
|
||||||
|
|
||||||
This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see <http://rmarkdown.rstudio.com>.
|
|
||||||
|
|
||||||
When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:
|
|
||||||
|
|
||||||
```{r cars}
|
|
||||||
summary(cars)
|
|
||||||
```
|
|
||||||
|
|
||||||
## Including Plots
|
|
||||||
|
|
||||||
You can also embed plots, for example:
|
|
||||||
|
|
||||||
```{r pressure, echo=FALSE}
|
|
||||||
plot(pressure)
|
|
||||||
```
|
|
||||||
|
|
||||||
Note that the `echo = FALSE` parameter was added to the code chunk to prevent printing of the R code that generated the plot.
|
|
||||||
|
|
||||||
# Upload Data
|
# Upload Data
|
||||||
```{r Upload Data}
|
```{r Upload Data}
|
||||||
TSR_data <- read.csv("./data/TSR data complete.csv")
|
TSR_data <- read.csv("./data/TSR data complete.csv")
|
||||||
|
subject_data <- read.csv("./data/Subject data.csv")
|
||||||
```
|
```
|
||||||
|
|
||||||
# Basic summary visualisations (RH):
|
# Basic summary visualisations (RH):
|
||||||
|
@ -55,7 +37,6 @@ gender_pie <- pie(table(TSR_data$Gender))
|
||||||
```
|
```
|
||||||
- Q17 (ethnic self-id)
|
- Q17 (ethnic self-id)
|
||||||
```{r ethnic self-id}
|
```{r ethnic self-id}
|
||||||
library(ggplot2)
|
|
||||||
TSR_data$Ethnicity <- factor(TSR_data$Ethnicity, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ,18, 19), labels = c("Arab", "Asian/Asian British - Indian", "Asian/Asian British - Pakistani", "Asian/Asian British - Bangladeshi", "Asian/Asian British - Chinese", "Asian/Asian British - Any other Asian background", "Black/Black British - African", "Black/Black British - Caribbean", "Black/Black British - Any other Black background", "Mixed/Multiple Ethnic Groups - White and Black Caribbean", "Mixed/Multiple Ethnic Groups - White and Black African", "Mixed/Multiple Ethnic Groups - White and Black Asian", "Mixed/Multiple Ethnic Groups - Any other Mixed/Multiple Ethnic background", "White - English/Welsh/Scottish/Northern Irish/British", "White - Irish", "White - Gypsy or Irish Traveller", "White - Any other White background", "Other Ethnic group, please describe", "Prefer not to say"))
|
TSR_data$Ethnicity <- factor(TSR_data$Ethnicity, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ,18, 19), labels = c("Arab", "Asian/Asian British - Indian", "Asian/Asian British - Pakistani", "Asian/Asian British - Bangladeshi", "Asian/Asian British - Chinese", "Asian/Asian British - Any other Asian background", "Black/Black British - African", "Black/Black British - Caribbean", "Black/Black British - Any other Black background", "Mixed/Multiple Ethnic Groups - White and Black Caribbean", "Mixed/Multiple Ethnic Groups - White and Black African", "Mixed/Multiple Ethnic Groups - White and Black Asian", "Mixed/Multiple Ethnic Groups - Any other Mixed/Multiple Ethnic background", "White - English/Welsh/Scottish/Northern Irish/British", "White - Irish", "White - Gypsy or Irish Traveller", "White - Any other White background", "Other Ethnic group, please describe", "Prefer not to say"))
|
||||||
|
|
||||||
Ethnicity_bar <- ggplot(TSR_data, aes(Ethnicity)) + geom_bar() + coord_flip()
|
Ethnicity_bar <- ggplot(TSR_data, aes(Ethnicity)) + geom_bar() + coord_flip()
|
||||||
|
@ -82,8 +63,6 @@ Religious_affiliation_bar
|
||||||
|
|
||||||
# The way the code is now - the below will help you visualize overall across the entire respondent cohort what the understanding, interest, and view of employability are by subject
|
# The way the code is now - the below will help you visualize overall across the entire respondent cohort what the understanding, interest, and view of employability are by subject
|
||||||
|
|
||||||
subject_data <- read.csv("./data/Subject data.csv")
|
|
||||||
|
|
||||||
#Q5 Subject Knowledge/Understanding
|
#Q5 Subject Knowledge/Understanding
|
||||||
subject_data$Subject <- factor(subject_data$Subject, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), labels = c("Philosophy", "Sociology", "Psychology", "History", "Ethics", "Theology", "Religious Studies", "Politics", "English", "Math", "Computer Science", "Business"))
|
subject_data$Subject <- factor(subject_data$Subject, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), labels = c("Philosophy", "Sociology", "Psychology", "History", "Ethics", "Theology", "Religious Studies", "Politics", "English", "Math", "Computer Science", "Business"))
|
||||||
|
|
||||||
|
@ -125,5 +104,3 @@ employability_bar
|
||||||
- Q18 responses
|
- Q18 responses
|
||||||
- Q17
|
- Q17
|
||||||
- Q18
|
- Q18
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue