fixed pander in appendix a, added sp plots for wilderness

This commit is contained in:
Jeremy Kidwell 2019-02-04 19:57:03 +00:00
parent aa1bd4df97
commit f9fe2b747c

View file

@ -53,21 +53,21 @@ local({r <- getOption("repos")
}) })
# TODO: need to alter this to use new sf data class as sp is deprecated # TODO: need to alter this to use new sf data class as sp is deprecated
require(sf) # new simplefeature data class, supercedes sp in many ways require(sf) # new simplefeature data class, supercedes sp in many ways
require(rgdal) require(rgdal) # deprecated by sf()
require(GISTools) # deprecated by sf() require(GISTools) # deprecated by sf()
require(sp) # needed for proj4string, deprecated by sf() require(sp) # needed for proj4string, deprecated by sf()
require(ggplot2) require(ggplot2)
require(broom) # required for tidying SPDF to data.frame for ggplot2 require(broom) # required for tidying SPDF to data.frame for ggplot2
require(rgeos) require(rgeos) # deprecated by sf()
require(ggmap) require(ggmap)
require(maptools) require(maptools)
require(RCurl) require(RCurl) # used for fetching reproducible datasets
# require(tibble) # using for grouped bar plot # require(tibble) # using for grouped bar plot
require(tidyr) # using for grouped bar plot require(tidyr) # using for grouped bar plot
require(plyr) require(plyr)
require(dplyr) require(dplyr)
require(reshape2) # using for grouped bar plot require(reshape2) # using for grouped bar plot
require(pander) require(pander) # produces tidy formatted tables
require(scales) require(scales)
# require(sqldf) # using sqldf to filter while loading very large data sets # require(sqldf) # using sqldf to filter while loading very large data sets
require(plotly) # allows for export of plots to dynamic web pages require(plotly) # allows for export of plots to dynamic web pages
@ -861,6 +861,7 @@ unzip("data/SSSI_SCOTLAND_ESRI.zip", exdir = "data")
} }
sssi <- st_read("data/SSSI_SCOTLAND.shp") sssi <- st_read("data/SSSI_SCOTLAND.shp")
sssi_sp <- readOGR("./data", "SSSI_SCOTLAND.shp")
# Download wild land areas: # Download wild land areas:
@ -872,6 +873,7 @@ unzip("data/WILDLAND_SCOTLAND_ESRI.zip", exdir = "data")
} }
wildland <- st_read("data/WILDLAND_SCOTLAND.shp") wildland <- st_read("data/WILDLAND_SCOTLAND.shp")
wildland_sp <- readOGR("./data", "WILDLAND_SCOTLAND.shp")
# Download data for National Forest Inventory: # Download data for National Forest Inventory:
# Note: UK-wide data is here: https://opendata.arcgis.com/datasets/bcd6742a2add4b68962aec073ab44138_0.zip?outSR=%7B%22wkid%22%3A27700%2C%22latestWkid%22%3A27700%7D # Note: UK-wide data is here: https://opendata.arcgis.com/datasets/bcd6742a2add4b68962aec073ab44138_0.zip?outSR=%7B%22wkid%22%3A27700%2C%22latestWkid%22%3A27700%7D
@ -883,6 +885,7 @@ unzip("data/National_Forest_Inventory_Woodland_Scotland_2017.zip", exdir = "data
} }
forest_inventory <- st_read("data/National_Forest_Inventory_Woodland_Scotland_2017.shp") forest_inventory <- st_read("data/National_Forest_Inventory_Woodland_Scotland_2017.shp")
forest_inventory_sp <- readOGR("./data", "National_Forest_Inventory_Woodland_Scotland_2017.shp")
# Set symmetrical CRS for analysis below # Set symmetrical CRS for analysis below
st_crs(sssi) <- 27700 st_crs(sssi) <- 27700
@ -922,6 +925,29 @@ pow_wilderness_row
```{r wilderness_plots} ```{r wilderness_plots}
# Plot using sp
ggplot() +
geom_polygon(aes(x = long, y = lat, group = group),
data = sssi_sp,
colour = 'black',
alpha = .7,
size = .005) +
geom_point(aes(X, Y, fill = NULL, group = NULL), size = 1, data=ecs_df,
colour = "black",
fill = "white",
size = .15,
stroke = .002,
alpha = .6,
show.legend = TRUE) +
labs(x = NULL, y = NULL, fill = "Groups",
title = "Figure 11",
subtitle="Sites of Special Scientific Interest with points marked",
caption = paste("Jeremy H. Kidwell :: jeremykidwell.info",
"Data: UK Data Service (OGL) & Jeremy H. Kidwell",
"You may redistribute this graphic under the terms of the CC-by-SA 4.0 license.",
sep = "\n"))
# Plot SSSI polygons with ECS points # Plot SSSI polygons with ECS points
if (utils::packageVersion("ggplot2") > "2.2.1") if (utils::packageVersion("ggplot2") > "2.2.1")
@ -941,7 +967,28 @@ if (utils::packageVersion("ggplot2") > "2.2.1")
sep = "\n")) sep = "\n"))
# Plot Forest Inventory # Plot Forest Inventory
ggplot() +
geom_polygon(aes(x = long, y = lat, group = group),
data = forest_inventory_sp,
colour = 'black',
alpha = .7,
size = .005) +
geom_point(aes(X, Y, fill = NULL, group = NULL), size = 1, data=ecs_df,
colour = "black",
fill = "white",
size = .15,
stroke = .002,
alpha = .6,
show.legend = TRUE) +
labs(x = NULL, y = NULL, fill = "Groups",
title = "Figure 11",
subtitle="Sites of Special Scientific Interest with points marked",
caption = paste("Jeremy H. Kidwell :: jeremykidwell.info",
"Data: UK Data Service (OGL) & Jeremy H. Kidwell",
"You may redistribute this graphic under the terms of the CC-by-SA 4.0 license.",
sep = "\n"))
ggplot() + ggplot() +
geom_sf(data = forest_inventory) geom_sf(data = forest_inventory)
@ -951,8 +998,6 @@ ggplot() +
# Appendix A # Appendix A
```{r pander_admin_table} ```{r pander_admin_table}
# TODO: uncomment admin.shortened lines below
# admin.shortened <- admin_lev1[,c(7,12:22)]
# Output CSV files for various levels of admin # Output CSV files for various levels of admin
write.csv(admin_lev1, "derivedData/admin_lev1.csv", row.names=FALSE) write.csv(admin_lev1, "derivedData/admin_lev1.csv", row.names=FALSE)
write.csv(admin_lev2, "derivedData/admin_lev2.csv", row.names=FALSE) write.csv(admin_lev2, "derivedData/admin_lev2.csv", row.names=FALSE)
@ -963,9 +1008,9 @@ write.csv(permaculture, "derivedData/permaculture.csv", row.names=FALSE)
write.csv(dtas, "derivedData/dtas.csv", row.names=FALSE) write.csv(dtas, "derivedData/dtas.csv", row.names=FALSE)
write.csv(simd, "derivedData/simd.csv", row.names=FALSE) write.csv(simd, "derivedData/simd.csv", row.names=FALSE)
## Output mmd tables using pander # Output mmd tables using pander
# panderOptions("digits", 2) panderOptions("digits", 2)
# pander(as_data_frame(admin_lev1[,c(3,5,7,11,13)])) pander(as_data_frame(admin_lev1[,c(3,5,7,11,13)]))
``` ```
# Appendix B # Appendix B