mirror of
https://github.com/kidwellj/mapping_environmental_action.git
synced 2025-01-08 23:12:19 +00:00
fixed error in ecs sssi table, added calc for pubs and grocery stores to other wilderness categories
This commit is contained in:
parent
5fdf5cad8b
commit
ec980c423d
|
@ -493,6 +493,7 @@ scenicareas_buf500 <- st_buffer(scenicareas_simplified, dist = 500)
|
|||
# plot(lnd[ sel, ], col = "turquoise", add = TRUE) # add selected zones to map
|
||||
# from https://gotellilab.github.io/Bio381/StudentPresentations/SpatialDataTutorial.html
|
||||
|
||||
# TODO: integrate pre-calc here into calculations further down which are still recalculating these figures
|
||||
ecs_sf_sssi <- st_within(ecs_sf, sssi_simplified)
|
||||
ecs_sf_sssi50m <- st_within(ecs_sf, sssi_buf50)
|
||||
ecs_sf_sssi500m <- st_within(ecs_sf, sssi_buf500)
|
||||
|
@ -514,6 +515,8 @@ ecs_sf_scenicareas500m <- st_within(ecs_sf, scenicareas_buf500)
|
|||
ecs_sf_scenicareasbeyond500m <- !(st_within(ecs_sf, scenicareas_buf500))
|
||||
|
||||
# TODO: implement more efficient code using do.call() function or sapply() as here https://stackoverflow.com/questions/3642535/creating-an-r-dataframe-row-by-row
|
||||
# TODO: implement parallel computing to distribute execution of loopable calculations below
|
||||
# See: https://nceas.github.io/oss-lessons/parallel-computing-in-r/parallel-computing-in-r.html
|
||||
|
||||
# Generate dataframe based on SSSI buffers
|
||||
|
||||
|
@ -581,23 +584,30 @@ permaculture_wildland_row <- c(sum(apply(st_within(permaculture_sf, wildland_sim
|
|||
wildland_counts <- rbind(wildland_counts, permaculture_wildland_row)
|
||||
|
||||
grocery_wildland_row <- c(sum(apply(st_within(poi_grocery_sf, wildland_simplified, sparse=FALSE), 1, any)), sum(apply(st_within(poi_grocery_sf, wildland_buf50, sparse=FALSE), 1, any)), sum(apply(st_within(poi_grocery_sf, wildland_buf500, sparse=FALSE), 1, any)))
|
||||
wildland_counts <- rbind(wildland_counts, grocery_wildland_row)
|
||||
|
||||
pubs_wildland_row <- c(sum(apply(st_within(poi_pubs_sf, wildland_simplified, sparse=FALSE), 1, any)), sum(apply(st_within(poi_pubs_sf, wildland_buf50, sparse=FALSE), 1, any)), sum(apply(st_within(poi_pubs_sf, wildland_buf500, sparse=FALSE), 1, any)))
|
||||
wildland_counts <- rbind(wildland_counts, pubs_wildland_row)
|
||||
|
||||
colnames(wildland_counts) <- c("Within Wildland Areas", "...50m", "...500m")
|
||||
|
||||
# Generate dataframe from rows based on percentages of totals
|
||||
|
||||
ecs_wildland_row_pct <- ecs_wildland_row/length(ecs_sf)
|
||||
ecs_wildland_row_pct <- ecs_wildland_row/length(ecs)
|
||||
pow_wildland_row_pct <- pow_wildland_row/length(pow_pointX)
|
||||
dtas_wildland_row_pct <- dtas_wildland_row/length(dtas)
|
||||
transition_wildland_row_pct <- transition_wildland_row/length(transition)
|
||||
permaculture_wildland_row_pct <- permaculture_wildland_row/length(permaculture)
|
||||
grocery_wildland_row_pct <- grocery_wildland_row/length(poi_grocery)
|
||||
pubs_wildland_row_pct <- pubs_wildland_row/length(poi_pubs)
|
||||
|
||||
wildland_counts_pct <- rbind(ecs_wildland_row_pct, pow_wildland_row_pct)
|
||||
wildland_counts_pct <- rbind(wildland_counts_pct, dtas_wildland_row_pct)
|
||||
wildland_counts_pct <- rbind(wildland_counts_pct, transition_wildland_row_pct)
|
||||
wildland_counts_pct <- rbind(wildland_counts_pct, permaculture_wildland_row_pct)
|
||||
wildland_counts_pct <- rbind(wildland_counts_pct, grocery_wildland_row_pct)
|
||||
wildland_counts_pct <- rbind(wildland_counts_pct, pubs_wildland_row_pct)
|
||||
|
||||
colnames(wildland_counts_pct) <- c("% Within wildlands", "% within 50m", "% within 500m")
|
||||
|
||||
# Merge into larger dataframe
|
||||
|
@ -620,22 +630,30 @@ permaculture_forestinv_row <- c(sum(apply(st_within(permaculture_sf, forestinv_s
|
|||
forestinv_counts <- rbind(forestinv_counts, permaculture_forestinv_row)
|
||||
|
||||
grocery_forestinv_row <- c(sum(apply(st_within(poi_grocery_sf, forestinv_simplified, sparse=FALSE), 1, any)), sum(apply(st_within(poi_grocery_sf, forestinv_buf50, sparse=FALSE), 1, any)), sum(apply(st_within(poi_grocery_sf, forestinv_buf500, sparse=FALSE), 1, any)))
|
||||
forestinv_counts <- rbind(forestinv_counts, grocery_forestinv_row)
|
||||
|
||||
pubs_forestinv_row <- c(sum(apply(st_within(poi_pubs_sf, forestinv_simplified, sparse=FALSE), 1, any)), sum(apply(st_within(poi_pubs_sf, forestinv_buf50, sparse=FALSE), 1, any)), sum(apply(st_within(poi_pubs_sf, forestinv_buf500, sparse=FALSE), 1, any)))
|
||||
forestinv_counts <- rbind(forestinv_counts, pubs_forestinv_row)
|
||||
|
||||
colnames(forestinv_counts) <- c("Within Woodlands", "...50m", "...500m")
|
||||
|
||||
# Generate dataframe from rows based on percentages of totals
|
||||
ecs_forestinv_row_pct <- ecs_forestinv_row/length(ecs_sf)
|
||||
# TODO: fix error generated by ecs_forestinv_row_pct using ecs_sf. Migrate all these to sf, but check for errors.
|
||||
ecs_forestinv_row_pct <- ecs_forestinv_row/length(ecs)
|
||||
pow_forestinv_row_pct <- pow_forestinv_row/length(pow_pointX)
|
||||
dtas_forestinv_row_pct <- dtas_forestinv_row/length(dtas)
|
||||
transition_forestinv_row_pct <- transition_forestinv_row/length(transition)
|
||||
permaculture_forestinv_row_pct <- permaculture_forestinv_row/length(permaculture)
|
||||
grocery_forestinv_row_pct <- grocery_forestinv_row/length(poi_grocery)
|
||||
pubs_forestinv_row_pct <- pubs_forestinv_row/length(poi_pubs)
|
||||
|
||||
forestinv_counts_pct <- rbind(ecs_forestinv_row_pct, pow_forestinv_row_pct)
|
||||
forestinv_counts_pct <- rbind(forestinv_counts_pct, dtas_forestinv_row_pct)
|
||||
forestinv_counts_pct <- rbind(forestinv_counts_pct, transition_forestinv_row_pct)
|
||||
forestinv_counts_pct <- rbind(forestinv_counts_pct, permaculture_forestinv_row_pct)
|
||||
forestinv_counts_pct <- rbind(forestinv_counts_pct, grocery_forestinv_row_pct)
|
||||
forestinv_counts_pct <- rbind(forestinv_counts_pct, pubs_forestinv_row_pct)
|
||||
|
||||
colnames(forestinv_counts_pct) <- c("% Within Woodlands", "% within 50m", "% within 500m")
|
||||
|
||||
# Merge into larger dataframe
|
||||
|
@ -658,23 +676,29 @@ permaculture_scenicareas_row <- c(sum(apply(st_within(permaculture_sf, scenicare
|
|||
scenicareas_counts <- rbind(scenicareas_counts, permaculture_scenicareas_row)
|
||||
|
||||
grocery_scenicareas_row <- c(sum(apply(st_within(poi_grocery_sf, scenicareas_simplified, sparse=FALSE), 1, any)), sum(apply(st_within(poi_grocery_sf, scenicareas_buf50, sparse=FALSE), 1, any)), sum(apply(st_within(poi_grocery_sf, scenicareas_buf500, sparse=FALSE), 1, any)))
|
||||
scenicareas_counts <- rbind(scenicareas_counts, grocery_scenicareas_row)
|
||||
|
||||
pubs_scenicareas_row <- c(sum(apply(st_within(poi_pubs_sf, scenicareas_simplified, sparse=FALSE), 1, any)), sum(apply(st_within(poi_pubs_sf, scenicareas_buf50, sparse=FALSE), 1, any)), sum(apply(st_within(poi_pubs_sf, scenicareas_buf500, sparse=FALSE), 1, any)))
|
||||
scenicareas_counts <- rbind(scenicareas_counts, pubs_scenicareas_row)
|
||||
|
||||
colnames(scenicareas_counts) <- c("Within Scenic Areas", "...50m", "...500m")
|
||||
|
||||
# Generate dataframe from rows based on percentages of totals
|
||||
|
||||
ecs_scenicareas_row_pct <- ecs_scenicareas_row/length(ecs_sf)
|
||||
ecs_scenicareas_row_pct <- ecs_scenicareas_row/length(ecs)
|
||||
pow_scenicareas_row_pct <- pow_scenicareas_row/length(pow_pointX)
|
||||
dtas_scenicareas_row_pct <- dtas_scenicareas_row/length(dtas)
|
||||
transition_scenicareas_row_pct <- transition_scenicareas_row/length(transition)
|
||||
permaculture_scenicareas_row_pct <- permaculture_scenicareas_row/length(permaculture)
|
||||
grocery_scenicareas_row_pct <- grocery_scenicareas_row/length(poi_grocery)
|
||||
pubs_scenicareas_row_pct <- pubs_scenicareas_row/length(poi_pubs)
|
||||
|
||||
scenicareas_counts_pct <- rbind(ecs_scenicareas_row_pct, pow_scenicareas_row_pct)
|
||||
scenicareas_counts_pct <- rbind(scenicareas_counts_pct, dtas_scenicareas_row_pct)
|
||||
scenicareas_counts_pct <- rbind(scenicareas_counts_pct, transition_scenicareas_row_pct)
|
||||
scenicareas_counts_pct <- rbind(scenicareas_counts_pct, permaculture_scenicareas_row_pct)
|
||||
scenicareas_counts_pct <- rbind(scenicareas_counts_pct, grocery_scenicareas_row_pct)
|
||||
scenicareas_counts_pct <- rbind(scenicareas_counts_pct, pubs_scenicareas_row_pct)
|
||||
colnames(scenicareas_counts_pct) <- c("% Within scenicareass", "% within 50m", "% within 500m")
|
||||
|
||||
# Merge into larger dataframe
|
||||
|
|
Binary file not shown.
Loading…
Reference in a new issue