mirror of
https://github.com/kidwellj/mapping_environmental_action.git
synced 2024-10-31 23:42:20 +00:00
merged plots 1/2, updated styling on tmap plots
This commit is contained in:
parent
880f0250d0
commit
4fcb4b076c
|
@ -321,46 +321,39 @@ Though there are too few eco-congregations and transition groups for a numerical
|
|||
|
||||
```{r plot_admin_ecs_choropleth, fig.width=4, fig.cap="Figure 1"}
|
||||
# Note: for more information on EU administrative levels, see here: https://ec.europa.eu/eurostat/web/nuts/national-structures-eu
|
||||
# TODO: Need to clip choropleth polygons to buildings shapefile
|
||||
# TODO: clip choropleth polygons to buildings shapefile (possble superceded by pverlay on lev2)
|
||||
|
||||
# Draw initial choropleth map of ECS concentration (using tmap and sf below by default)
|
||||
|
||||
tm_shape(admin_lev1) +
|
||||
tm_fill(col = "ecs_count", palette = "Oranges") +
|
||||
tm_shape(admin_lev2) +
|
||||
tm_fill(col = "ecs_count", palette = "Oranges", title = "Concentration of ECS groups") +
|
||||
tm_borders(alpha=.5) +
|
||||
tm_shape(admin_lev1) +
|
||||
tm_borders(lwd=2) +
|
||||
# TODO: Change title field "name" to match admin1
|
||||
# also consider scaling text size using area # quick plot example:
|
||||
# qtm(World, fill = "income_grp", text = "iso_a3", text.size = "AREA") # use "World$" to see the two attributes: income_grp and iso_a3, text.size= area: text is sized increasingly with coutry area size.
|
||||
tm_text("name", size=.8, shadow=TRUE,
|
||||
bg.color="white", bg.alpha=.25) +
|
||||
# tm_shape(ecs_sf) +
|
||||
# tm_dots("red", size = .05, alpha = .4) +
|
||||
# tm_scale_bar(position = c("left", "bottom")) +
|
||||
tm_style("gray", title = "Figure 1a") +
|
||||
tm_credits("Data: UK Data Service (OGL)
|
||||
& Jeremy H. Kidwell,
|
||||
Graphic is CC-by-SA 4.0",
|
||||
position = c("right", "bottom")) +
|
||||
tm_layout(title = "Concentration of ECS groups",
|
||||
# tm_scale_bar(position = c("right", "bottom")) +
|
||||
tm_style("gray") +
|
||||
tm_credits("Data: UK Data Service (OGL)\n& Jeremy H. Kidwell,\nGraphic is CC-by-SA 4.0",
|
||||
size = 0.7,
|
||||
position = c("left", "bottom"),
|
||||
just = c("left", "bottom"),
|
||||
align = "left") +
|
||||
tm_layout(asp=NA
|
||||
frame = FALSE,
|
||||
title = "Figure 1a",
|
||||
title.size = .7,
|
||||
legend.title.size = .7,
|
||||
inner.margins = c(0.1, 0.1, 0.05, 0.05)
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
## Eco-Congregation Scotland groups shown by concentration in administrative regions (LAU)
|
||||
|
||||
```{r plot_admin_ecs_admin2_choropleth, fig.width=4, fig.show="hold", fig.cap="Figure 2"}
|
||||
|
||||
tm_shape(admin_lev2) +
|
||||
tm_fill(col = "ecs_count", palette = "Oranges") +
|
||||
tm_style("gray", title = "Figure 2") +
|
||||
tm_credits("Data: UK Data Service (OGL)
|
||||
& Jeremy H. Kidwell,
|
||||
Graphic is CC-by-SA 4.0",
|
||||
position = c("right", "bottom")) +
|
||||
tm_layout(title = "Concentration of ECS groups",
|
||||
frame = FALSE,
|
||||
title.size = .7,
|
||||
inner.margins = c(0.1, 0.1, 0.05, 0.05)
|
||||
)
|
||||
```
|
||||
|
||||
|
||||
|
||||
```{r plot_admin_ecs_normed_choropleth, fig.width=4, fig.show="hold", fig.cap="Figure 3"}
|
||||
|
@ -573,6 +566,7 @@ urbanrural$dtas_percent<- prop.table(urbanrural$dtas_count)
|
|||
# calculate count of permaculture for fields in urbanrural
|
||||
urbanrural$permaculture_count <- poly.counts(permaculture,urbanrural)
|
||||
urbanrural$permaculture_percent<- prop.table(urbanrural$permaculture_count)
|
||||
|
||||
```
|
||||
|
||||
Rather than bifurcate congregations into an urban/rural dichotomy, for this study we used the Scottish Government's six-point remoteness scale to categorise eco-congregations along a spectrum of highly populated to remote areas. This 8-fold scale (calculated biennially) offers a more nuanced measurement that combines measurements of remoteness and population along the following lines:
|
||||
|
@ -619,7 +613,7 @@ ggplot(urbanrural_gathered,
|
|||
# Generate static plot for printing
|
||||
|
||||
tm_shape(urbanrural_sf_simplified) +
|
||||
tm_polygons(col = "UR8FOLD", palette = "BrBG", lwd=0.001) +
|
||||
tm_polygons(col = "UR8FOLD", palette = "BrBG", lwd=0.001, n=8) +
|
||||
tm_shape(ecs_sf) +
|
||||
tm_dots("red", size = .05, alpha = .4) +
|
||||
tm_scale_bar(position = c("left", "bottom")) +
|
||||
|
@ -910,6 +904,13 @@ st_crs(forestinv) <- 27700
|
|||
st_crs(forestinv_buf50) <- 27700
|
||||
st_crs(forestinv_buf500) <- 27700
|
||||
|
||||
# TODO: consider subsetting instead here, e.g.:
|
||||
|
||||
# plot(lnd, col = "lightgrey") # plot the london_sport object
|
||||
# sel <- lnd$Partic_Per > 25
|
||||
# plot(lnd[ sel, ], col = "turquoise", add = TRUE) # add selected zones to map
|
||||
# from https://gotellilab.github.io/Bio381/StudentPresentations/SpatialDataTutorial.html
|
||||
|
||||
ecs_sf_sssi <- st_within(ecs_sf, sssi)
|
||||
ecs_sf_sssi50m <- st_within(ecs_sf, sssi_buf50)
|
||||
ecs_sf_sssi500m <- st_within(ecs_sf, sssi_buf500)
|
||||
|
|
Loading…
Reference in a new issue