#High interest in Sociology hSocTheo <- mean(as.numeric(Soc_subset_Low$InterestedinstudyingTheology), na.rm = TRUE) ## Religious Studies Interest #Low interest in Sociology mean(as.numeric(Soc_subset_Low$InterestedinstudyingReligiousStudies), na.rm = TRUE) #High interest in Sociology mean(as.numeric(Soc_subset_High$InterestedinstudyingReligiousStudies), na.rm = TRUE) ### Philosophy ### Philos_subset_Low <- TSR_data[TSR_data$GoodunderstandingofPhilosophy < 3 & TSR_data$GoodunderstandingofPhilosophy != 0, ] Philos_subset_High <- TSR_data[TSR_data$GoodunderstandingofPhilosophy > 3, ] ## Theology Knowledge #Low knowledge in Philosophy mean(as.numeric(Philos_subset_Low$GoodunderstandingofTheology), na.rm = TRUE) #High knowledge in Philosophy mean(as.numeric(Philos_subset_Low$GoodunderstandingofTheology), na.rm = TRUE) ## Religious Studies Knowledge #Low knowledge in Philosophy mean(as.numeric(Philos_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE) #High knowledge in Philosophy mean(as.numeric(Philos_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE) ## Religious Studies Knowledge #Low knowledge in Philosophy mean(as.numeric(Philos_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE) #High knowledge in Philosophy mean(as.numeric(Philos_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE) ```{r Sociology} ### Sociology ### Soc_subset_Low <- TSR_data[TSR_data$GoodunderstandingofSociology < 3 & TSR_data$GoodunderstandingofSociology != 0, ] Soc_subset_High <- TSR_data[TSR_data$GoodunderstandingofSociology > 3, ] ## Theology knowledge #Low knowledge in Sociology mean(as.numeric(Soc_subset_Low$GoodunderstandingofTheology), na.rm = TRUE) #High knowledge in Sociology mean(as.numeric(Soc_subset_Low$GoodunderstandingofTheology), na.rm = TRUE) ## Religious Studies knowledge #Low knowledge in Sociology mean(as.numeric(Soc_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE) #High knowledge in Sociology mean(as.numeric(Soc_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE) ## Religious Studies knowledge #Low knowledge in Sociology mean(as.numeric(Soc_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE) #High knowledge in Sociology mean(as.numeric(Soc_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE) ```{r Psychology} ### Psychology ### Psych_subset_Low <- TSR_data[TSR_data$GoodunderstandingofPsychology < 3 & TSR_data$GoodunderstandingofPsychology != 0, ] Psych_subset_High <- TSR_data[TSR_data$GoodunderstandingofPsychology > 3, ] ## Theology knowledge #Low knowledge in Psychology mean(as.numeric(Psych_subset_Low$GoodunderstandingofTheology), na.rm = TRUE) #High knowledge in Psychology mean(as.numeric(Psych_subset_Low$GoodunderstandingofTheology), na.rm = TRUE) ## Religious Studies knowledge #Low knowledge in Psychology mean(as.numeric(Psych_subset_Low$GoodunderstandingofReligiousStudies), na.rm = TRUE) #High knowledge in Psychology mean(as.numeric(Psych_subset_High$GoodunderstandingofReligiousStudies), na.rm = TRUE) ### History ### Hist_subset_Low <- TSR_data[TSR_data$GoodunderstandingofHistory < 3 & TSR_data$GoodunderstandingofHistory != 0, ] Hist_subset_High <- TSR_data[TSR_data$GoodunderstandingofHistory > 3, ] require(devtools) library(ggplot2) require(ggplot2) require(usethis) require(devtools) require(likert) TSR_data <- read.csv("./data/TSR data complete.csv") subject_data <- read.csv("./data/Subject data.csv") TSR_data$Age <- factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say")) age_pie <- pie(table(TSR_data$Age)) # Load RColorBrewer # install.packages("RColorBrewer") library(RColorBrewer) # Define colour palettes for plots below coul3 <- brewer.pal(3, "RdYlBu") # Using RdYlBu range to generate 3 colour palette: https://colorbrewer2.org/#type=diverging&scheme=RdYlBu&n=5 TSR_data$Age <- factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say")) age_pie <- pie(table(TSR_data$Age), col=coul3) TSR_data$Age <- factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say")) View(TSR_data) TSR_data <- read.csv("./data/TSR data complete.csv") View(TSR_data) TSR_data$Age <- factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say")) age_pie <- pie(table(TSR_data$Age), col=coul3) TSR_data$MOST.RECENT.year.of.study <- factor(TSR_data$MOST.RECENT.year.of.study, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9), labels = c("Year 11/S4/Year 12(NI)", "Year 12/S5/Year 13(NI)", "Year 13/S6/Year 14(NI)", "I am currently on a gap year", "I am currently on an undergraduate/HE college course", "I am in full-time employment", "I am unemployed", "Other", "Prefer not to say")) TSR_data$Age <- age_pie <- pie(table(factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say"))), col=coul3) TSR_data$Age <- age_pie <- pie(table(factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say")), col=coul3) pie(table(factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say"))), col=coul3) pie(table(factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say"))), col=coul3)) age_pie <- pie(table(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say")), col=coul3) age_pie <- pie(table(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say")), col=coul3)) TSR_data <- read.csv("./data/TSR data complete.csv") TSR_data_summaries$Age <- factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say")) TSR_data_summaries <- factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say")) age_pie <- pie(table(TSR_data_summaries$Age), col=coul3) age_pie <- pie(table(TSR_data_summaries), col=coul3) # JK note: To keep things tidy, I've shifted the code here so that this isn't overwriting the dataset, but is instead operating off a separate df (same below) TSR_data_summaries_age <- factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say")) age_pie <- pie(table(TSR_data_summaries_age), col=coul3) age_pie <- pie(table(TSR_data_summaries_age), col=coul3, cex = 0.8) Ethnicity_bar <- ggplot(TSR_data, aes(Ethnicity)) + geom_bar() + coord_flip() Ethnicity_bar ggplot(TSR_data, aes(TSR_data_summaries_age)) + geom_bar() # JK note: adding in a bar chart here, as according to the interwebs it's (apparently?) more accurate to visualise than bar charts ggplot(TSR_data, aes(TSR_data_summaries_age)) + geom_bar() +coord_flip() # JK note: adding in a bar chart here, as according to the interwebs it's (apparently?) more accurate to visualise than bar charts ggplot(TSR_data, aes(TSR_data_summaries_age, fill=match)) + geom_bar() +coord_flip() # JK note: adding in a bar chart here, as according to the interwebs it's (apparently?) more accurate to visualise than bar charts ggplot(TSR_data, aes(TSR_data_summaries_age, fill=coul3)) + geom_bar() +coord_flip() # JK note: adding in a bar chart here, as according to the interwebs it's (apparently?) more accurate to visualise than bar charts ggplot(TSR_data, aes(TSR_data_summaries_age)) + geom_bar() # JK note: adding in a bar chart here, as according to the interwebs it's (apparently?) more accurate to visualise than bar charts ggplot(TSR_data, aes(TSR_data_summaries_age)) + geom_bar() # save to png file for reports ggsave("TSR_data_summaries_age.png") # save to png file for reports ggsave("figures/TSR_data_summaries_age.png") # JK note: adding in a bar chart here, as according to the interwebs it's (apparently?) more accurate to visualise than bar charts ggplot(TSR_data, aes(TSR_data_summaries_age)) + geom_bar() + title("Age of respondents") # JK note: To keep things tidy, I've shifted the code here so that this isn't overwriting the dataset, but is instead operating off a separate df (same below) TSR_data_summaries_age <- factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say")) data_summaries_age labs(colour = "TSR_data_summaries_age") data_summaries_age labs(title = "Respondent Age") # JK note: adding in a bar chart here, as according to the interwebs it's (apparently?) more accurate to visualise than bar charts data_summaries_age <- ggplot(TSR_data, aes(TSR_data_summaries_age)) + geom_bar() + title("Age of respondents") # JK note: adding in a bar chart here, as according to the interwebs it's (apparently?) more accurate to visualise than bar charts data_summaries_age <- ggplot(TSR_data, aes(TSR_data_summaries_age)) + geom_bar() data_summaries_age labs(title = "Respondent Age") data_summaries_age + labs(title = "Respondent Age") data_summaries_age + labs(title = "Respondent Age Distribution", x = "Age") data_summaries_age + labs(title = "Respondent Age Distribution", x = "Age", y = "") # save to png file for reports ggsave("figures/TSR_data_summaries_age.png") TSR_data_summaries_most_recent_year_of_study <- factor(TSR_data$MOST.RECENT.year.of.study, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9), labels = c("Year 11/S4/Year 12(NI)", "Year 12/S5/Year 13(NI)", "Year 13/S6/Year 14(NI)", "I am currently on a gap year", "I am currently on an undergraduate/HE college course", "I am in full-time employment", "I am unemployed", "Other", "Prefer not to say")) Year_study_pie <- pie(table(TSR_data_summaries_most_recent_year_of_study)) Year_study_pie <- pie(table(TSR_data_summaries_most_recent_year_of_study$MOST.RECENT.year.of.study)) TSR_data_summaries_most_recent_year_of_study <- factor(TSR_data$MOST.RECENT.year.of.study, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9), labels = c("Year 11/S4/Year 12(NI)", "Year 12/S5/Year 13(NI)", "Year 13/S6/Year 14(NI)", "I am currently on a gap year", "I am currently on an undergraduate/HE college course", "I am in full-time employment", "I am unemployed", "Other", "Prefer not to say")) data_summaries_yos <- factor(TSR_data$MOST.RECENT.year.of.study, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9), labels = c("Year 11/S4/Year 12(NI)", "Year 12/S5/Year 13(NI)", "Year 13/S6/Year 14(NI)", "I am currently on a gap year", "I am currently on an undergraduate/HE college course", "I am in full-time employment", "I am unemployed", "Other", "Prefer not to say")) Year_study_pie <- pie(table(data_summaries_yos$MOST.RECENT.year.of.study)) Year_study_pie <- pie(table(data_summaries_yos)) TSR_data <- read.csv("./data/TSR data complete.csv") data_summaries_yos <- factor(TSR_data$MOST.RECENT.year.of.study, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9), labels = c("Year 11/S4/Year 12(NI)", "Year 12/S5/Year 13(NI)", "Year 13/S6/Year 14(NI)", "I am currently on a gap year", "I am currently on an undergraduate/HE college course", "I am in full-time employment", "I am unemployed", "Other", "Prefer not to say")) Year_study_pie <- pie(table(data_summaries_yos)) pie(table(data_summaries_yos)) TSR_data_summaries_yos <- factor(TSR_data$MOST.RECENT.year.of.study, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9), labels = c("Year 11/S4/Year 12(NI)", "Year 12/S5/Year 13(NI)", "Year 13/S6/Year 14(NI)", "I am currently on a gap year", "I am currently on an undergraduate/HE college course", "I am in full-time employment", "I am unemployed", "Other", "Prefer not to say")) data_summaries_yos <- ggplot(TSR_data, aes(TSR_data_summaries_yos)) + geom_bar() data_summaries_yos + labs(title = "Respondent Most Recent Year of Study", x = "Age", y = "") data_summaries_yos <- ggplot(TSR_data_summaries_yos, aes(TSR_data_summaries_yos)) + geom_bar() TSR_data$MOST.RECENT.year.of.study <- factor(TSR_data$MOST.RECENT.year.of.study, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9), labels = c("Year 11/S4/Year 12(NI)", "Year 12/S5/Year 13(NI)", "Year 13/S6/Year 14(NI)", "I am currently on a gap year", "I am currently on an undergraduate/HE college course", "I am in full-time employment", "I am unemployed", "Other", "Prefer not to say")) TSR_data <- read.csv("./data/TSR data complete.csv") View(TSR_data) View(TSR_data) TSR_data_summaries_yos <- factor(TSR_data$MOSTRECENTyearofstudy, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9), labels = c("Year 11/S4/Year 12(NI)", "Year 12/S5/Year 13(NI)", "Year 13/S6/Year 14(NI)", "I am currently on a gap year", "I am currently on an undergraduate/HE college course", "I am in full-time employment", "I am unemployed", "Other", "Prefer not to say")) data_summaries_yos <- ggplot(TSR_data_summaries_yos, aes(TSR_data_summaries_yos)) + geom_bar() data_summaries_yos <- ggplot(TSR_data, aes(TSR_data_summaries_yos)) + geom_bar() data_summaries_yos + labs(title = "Respondent Most Recent Year of Study", x = "Age", y = "") data_summaries_yos + labs(title = "Respondent Most Recent Year of Study", x = "", y = "") # save to png file for reports ggsave("figures/TSR_data_summaries_age.png") # save to png file for reports ggsave("figures/TSR_data_summaries_yos.png") # JK note: adding in a bar chart here, as according to the interwebs it's (apparently?) more accurate to visualise than bar charts data_summaries_age <- ggplot(TSR_data, aes(TSR_data_summaries_age)) + geom_bar() data_summaries_age + labs(title = "Respondent Age Distribution", x = "Age", y = "") # save to png file for reports ggsave("figures/TSR_data_summaries_age.png") TSR_data_summaries_gender <- factor(TSR_data$Gender, levels = c(1, 2, 3, 4), labels = c("Male", "Female", "I identify my gender in another way", "Prefer not to say")) data_summaries_gender + labs(title = "Respondent gender self-identification", x = "", y = "") TSR_data_summaries_gender <- factor(TSR_data$Gender, levels = c(1, 2, 3, 4), labels = c("Male", "Female", "I identify my gender in another way", "Prefer not to say")) data_summaries_gender <- ggplot(TSR_data, aes(TSR_data_summaries_gender)) + geom_bar() data_summaries_gender + labs(title = "Respondent gender self-identification", x = "", y = "") # save to png file for reports ggsave("figures/TSR_data_summaries_gender.png") install.packages("stringr") # Install stringr package, used for wrapping label text in plots install.packages("stringr") library("stringr") # Load stringr data_summaries_gender + labs(title = "Respondent gender self-identification", x = "", y = "") + str_wrap(x, width = 10)) data_summaries_gender + labs(title = "Respondent gender self-identification", x = "", y = "") str_wrap(x, width = 10)) data_summaries_gender + labs(title = "Respondent gender self-identification", x = "", y = "") + str_wrap(x, width = 10) data_summaries_gender <- ggplot(TSR_data, aes(TSR_data_summaries_gender)) + geom_bar() library(ggplot2) library(devtools) library(devtools) library(usethis) library(devtools) library(likert) # Load RColorBrewer # install.packages("RColorBrewer") library(RColorBrewer) install.packages("stringr") # Install stringr package, used for wrapping label text in plots library("stringr") # Load stringr package, used for wrapping label text in plots # Define colour palettes for plots below coul3 <- brewer.pal(3, "RdYlBu") # Using RdYlBu range to generate 3 colour palette: https://colorbrewer2.org/#type=diverging&scheme=RdYlBu&n=5 TSR_data <- read.csv("./data/TSR data complete.csv") subject_data <- read.csv("./data/Subject data.csv") knitr::opts_chunk$set(echo = TRUE) library(ggplot2) library(devtools) library(usethis) library(devtools) library(likert) # Load RColorBrewer # install.packages("RColorBrewer") library(RColorBrewer) library("stringr") # Load stringr package, used for wrapping label text in plots # Define colour palettes for plots below coul3 <- brewer.pal(3, "RdYlBu") # Using RdYlBu range to generate 3 colour palette: https://colorbrewer2.org/#type=diverging&scheme=RdYlBu&n=5 TSR_data <- read.csv("./data/TSR data complete.csv") subject_data <- read.csv("./data/Subject data.csv") # JK note: To keep things tidy, I've shifted the code here so that this isn't overwriting the dataset, but is instead operating off a separate df (same below) TSR_data_summaries_age <- factor(TSR_data$Age, levels = c(1, 2, 3, 4, 5, 6, 7, 8), labels = c("15 or under", "16", "17", "18", "19", "20", "21 or over", "Prefer not to say")) # JK note: adding in a bar chart here, as according to the interwebs it's (apparently?) more accurate to visualise than bar charts data_summaries_age <- ggplot(TSR_data, aes(TSR_data_summaries_age)) + geom_bar() data_summaries_age + labs(title = "Respondent Age Distribution", x = "Age", y = "") TSR_data_summaries_yos <- factor(TSR_data$MOSTRECENTyearofstudy, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9), labels = c("Year 11/S4/Year 12(NI)", "Year 12/S5/Year 13(NI)", "Year 13/S6/Year 14(NI)", "I am currently on a gap year", "I am currently on an undergraduate/HE college course", "I am in full-time employment", "I am unemployed", "Other", "Prefer not to say")) data_summaries_yos <- ggplot(TSR_data, aes(TSR_data_summaries_yos)) + geom_bar() data_summaries_yos + labs(title = "Respondent Most Recent Year of Study", x = "", y = "") # save to png file for reports ggsave("figures/TSR_data_summaries_yos.png") TSR_data_summaries_gender <- factor(TSR_data$Gender, levels = c(1, 2, 3, 4), labels = c("Male", "Female", "I identify my gender in another way", "Prefer not to say")) data_summaries_gender <- ggplot(TSR_data, aes(TSR_data_summaries_gender)) + geom_bar() data_summaries_gender + labs(title = "Respondent gender self-identification", x = "", y = "") + str_wrap(x, width = 10) TSR_data_summaries_gender <- str_wrap(TSR_data_summaries_gender, width = 10) data_summaries_gender <- ggplot(TSR_data, aes(TSR_data_summaries_gender)) + geom_bar() data_summaries_gender + labs(title = "Respondent gender self-identification", x = "", y = "") + str_wrap(x, width = 10) data_summaries_gender + labs(title = "Respondent gender self-identification", x = "", y = "") # save to png file for reports ggsave("figures/TSR_data_summaries_gender.png") TSR_data_summaries_ethnicity$ethnicity <- factor(TSR_data$Ethnicity, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ,18, 19), labels = c("Arab", "Asian/Asian British - Indian", "Asian/Asian British - Pakistani", "Asian/Asian British - Bangladeshi", "Asian/Asian British - Chinese", "Asian/Asian British - Any other Asian background", "Black/Black British - African", "Black/Black British - Caribbean", "Black/Black British - Any other Black background", "Mixed/Multiple Ethnic Groups - White and Black Caribbean", "Mixed/Multiple Ethnic Groups - White and Black African", "Mixed/Multiple Ethnic Groups - White and Black Asian", "Mixed/Multiple Ethnic Groups - Any other Mixed/Multiple Ethnic background", "White - English/Welsh/Scottish/Northern Irish/British", "White - Irish", "White - Gypsy or Irish Traveller", "White - Any other White background", "Other Ethnic group, please describe", "Prefer not to say")) TSR_data_summaries_ethnicity <- factor(TSR_data$Ethnicity, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ,18, 19), labels = c("Arab", "Asian/Asian British - Indian", "Asian/Asian British - Pakistani", "Asian/Asian British - Bangladeshi", "Asian/Asian British - Chinese", "Asian/Asian British - Any other Asian background", "Black/Black British - African", "Black/Black British - Caribbean", "Black/Black British - Any other Black background", "Mixed/Multiple Ethnic Groups - White and Black Caribbean", "Mixed/Multiple Ethnic Groups - White and Black African", "Mixed/Multiple Ethnic Groups - White and Black Asian", "Mixed/Multiple Ethnic Groups - Any other Mixed/Multiple Ethnic background", "White - English/Welsh/Scottish/Northern Irish/British", "White - Irish", "White - Gypsy or Irish Traveller", "White - Any other White background", "Other Ethnic group, please describe", "Prefer not to say")) Ethnicity_bar <- ggplot(TSR_data, aes(Ethnicity)) + geom_bar() + coord_flip() Ethnicity_bar <- ggplot(TSR_data, aes(TSR_data_summaries_ethnicity)) + geom_bar() + coord_flip() Ethnicity_bar data_summaries_ethnicity <- ggplot(TSR_data, aes(TSR_data_summaries_ethnicity)) + geom_bar() + coord_flip() data_summaries_ethnicity TSR_data_summaries_ethnicity <- str_wrap(TSR_data_summaries_ethnicity, width = 20) data_summaries_ethnicity <- ggplot(TSR_data, aes(TSR_data_summaries_ethnicity)) + geom_bar() + coord_flip() data_summaries_ethnicity data_summaries_ethnicity <- ggplot(TSR_data, aes(TSR_data_summaries_ethnicity)) + geom_bar() + coord_flip() + xlab(NULL) + ylab(yaxis_label) data_summaries_ethnicity <- ggplot(TSR_data, aes(TSR_data_summaries_ethnicity)) + geom_bar() + coord_flip() + xlab(NULL) data_summaries_ethnicity # save to png file for reports ggsave("figures/TSR_data_summaries_ethnicity.png") data_summaries_ethnicity <- ggplot(TSR_data, aes(TSR_data_summaries_ethnicity)) + geom_col()) + coord_flip() + xlab(NULL) data_summaries_ethnicity <- ggplot(TSR_data, aes(TSR_data_summaries_ethnicity)) + geom_col() + coord_flip() + xlab(NULL) data_summaries_ethnicity data_summaries_ethnicity <- ggplot(TSR_data, aes(TSR_data_summaries_ethnicity)) + geom_bar() + scale_x_discrete(labels = wrap) + xlab(NULL) + coord_flip() data_summaries_ethnicity <- ggplot(TSR_data, aes(TSR_data_summaries_ethnicity)) + geom_bar() + xlab(NULL) + coord_flip() data_summaries_ethnicity TSR_data_summaries_ethnicity <- str_wrap(TSR_data_summaries_ethnicity, width = 30) data_summaries_ethnicity <- ggplot(TSR_data, aes(TSR_data_summaries_ethnicity)) + geom_bar() + xlab(NULL) + coord_flip() data_summaries_ethnicity TSR_data_summaries_ethnicity <- factor(TSR_data$Ethnicity, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ,18, 19), labels = c("Arab", "Indian", "Pakistani", "Bangladeshi", "Chinese", "Any other Asian background", "African", "Caribbean", "Any other Black background", "White and Black Caribbean", "White and Black African", "White and Black Asian", "Any other Mixed/Multiple Ethnic background", "White - British", "White - Irish", "Gypsy or Irish Traveller", "Any other White background", "Other Ethnic group", "Prefer not to say")) TSR_data_summaries_ethnicity <- str_wrap(TSR_data_summaries_ethnicity, width = 30) data_summaries_ethnicity <- ggplot(TSR_data, aes(TSR_data_summaries_ethnicity)) + geom_bar() + xlab(NULL) + coord_flip() data_summaries_ethnicity TSR_data_summaries_ethnicity <- factor(TSR_data$Ethnicity, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ,18, 19), labels = c("Arab", "Indian", "Pakistani", "Bangladeshi", "Chinese", "Any other Asian background", "Black - African", "Black - Caribbean", "Any other Black background", "Mixed - White and Black Caribbean", "Mixed - White and Black African", "Mixed - White and Black Asian", "Any other Mixed/Multiple Ethnic background", "White - British", "White - Irish", "Gypsy or Irish Traveller", "Any other White background", "Other Ethnic group", "Prefer not to say")) TSR_data_summaries_ethnicity <- str_wrap(TSR_data_summaries_ethnicity, width = 30) data_summaries_ethnicity <- ggplot(TSR_data, aes(TSR_data_summaries_ethnicity)) + geom_bar() + xlab(NULL) + coord_flip() data_summaries_ethnicity # save to png file for reports ggsave("figures/TSR_data_summaries_ethnicity.png") TSR_data_summaries_religion <- factor(TSR_data$Religious.Affliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other")) Religious_affiliation_bar <- ggplot(TSR_data, aes(Religious.Affliation)) + geom_bar() + coord_flip() Religious_affiliation_bar Religious_affiliation_bar <- ggplot(TSR_data, aes(TSR_data_summaries_religion)) + geom_bar() + coord_flip() Religious_affiliation_bar TSR_data_summaries_religion <- factor(TSR_data$Religious.Affliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other")) Religious_affiliation_bar <- ggplot(TSR_data, aes(TSR_data_summaries_religion)) + geom_bar() + coord_flip() Religious_affiliation_bar Religious_affiliation_bar <- ggplot(TSR_data_summaries_religion, aes(TSR_data_summaries_religion)) + geom_bar() + coord_flip() Religious_affiliation_bar View(Religious_affiliation_bar) TSR_data_summaries_religion <- factor(TSR_data$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other")) Religious_affiliation_bar <- ggplot(TSR_data, aes(Religious.Affliation)) + geom_bar() + coord_flip() Religious_affiliation_bar Religious_affiliation_bar <- ggplot(TSR_data, aes(TSR_data_summaries_religion)) + geom_bar() + coord_flip() Religious_affiliation_bar data_summaries_ethnicity + labs(title = "Respondent ethnic self-identification", x = "", y = "") data_summaries_ethnicity # save to png file for reports ggsave("figures/TSR_data_summaries_ethnicity.png") TSR_data_summaries_ethnicity <- str_wrap(TSR_data_summaries_ethnicity, width = 30) data_summaries_ethnicity <- ggplot(TSR_data, aes(TSR_data_summaries_ethnicity)) + geom_bar() + xlab(NULL) + coord_flip() data_summaries_ethnicity + labs(title = "Respondent ethnic self-identification", x = "", y = "") data_summaries_ethnicity # save to png file for reports ggsave("figures/TSR_data_summaries_ethnicity.png") data_summaries_ethnicity + labs(title = "Respondent ethnic self-identification", x = "", y = "") # save to png file for reports ggsave("figures/TSR_data_summaries_ethnicity.png") Religious_affiliation_bar <- ggplot(TSR_data, aes(TSR_data_summaries_religion)) + geom_bar() + coord_flip() Religious_affiliation_bar + labs(title = "Respondent religious self-identification", x = "", y = "") # save to png file for reports ggsave("figures/TSR_data_summaries_religion.png") #Q5 Subject Knowledge/Understanding subject_data$Subject <- factor(subject_data$Subject, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), labels = c("Philosophy", "Sociology", "Psychology", "History", "Ethics", "Theology", "Religious Studies", "Politics", "English", "Math", "Computer Science", "Business")) understanding_mean <- aggregate(Understanding ~ Subject, data = subject_data, mean) understanding_bar <- ggplot(understanding_mean, aes(x = Subject, y = Understanding)) + stat_summary(fun = "mean", geom = "bar") + coord_flip() understanding_bar understanding_bar + labs(title = "I have a good understanding of what this subject involves?", x = "", y = "") # save to png file for reports ggsave("figures/TSR_data_subject_understanding.png") understanding_mean <- aggregate(Understanding ~ Subject, data = subject_data, mean) understanding_bar <- ggplot(understanding_mean, aes(x = Subject, y = Understanding)) + stat_summary(fun = "mean", geom = "bar") + coord_flip() understanding_bar + labs(title = "I have a good understanding of what this subject involves?", x = "", y = "") # save to png file for reports ggsave("figures/TSR_data_subject_understanding.png") #Q6 Subject Interest interest_mean <- aggregate(Interest ~ Subject, data = subject_data, mean) interest_bar <- ggplot(interest_mean, aes(x = Subject, y = Interest)) + stat_summary(fun = "mean", geom = "bar") + coord_flip() interest_bar + labs(title = "I would be interested in studying this subject at University?", x = "", y = "") # save to png file for reports ggsave("figures/TSR_data_subject_interest.png") employability_mean <- aggregate(Employability ~ Subject, data = subject_data, mean) employability_bar <- ggplot(employability_mean, aes(x = Subject, y = Employability)) + stat_summary(fun = "mean", geom = "bar") + coord_flip() employability_bar + labs(title = "please rate from 1 to 5 where 1 represents 'Good employability prospects’ and 5 represents ‘Poor employability prospects'", x = "", y = "") # save to png file for reports ggsave("figures/TSR_data_subject_employability.png") employability_bar + labs(title = "please rate ... employability prospects", x = "", y = "") # save to png file for reports ggsave("figures/TSR_data_subject_employability.png") #likert_test <- likert(subject_data) Understanding_data <- TSR_data[, 6:17] likert_test_understand <- likert(Understanding_data) #likert_test <- likert(subject_data) likert(TSR_data[, 6:17]) #likert_test <- likert(subject_data) likert(TSR_data[, 6]) #likert_test <- likert(subject_data) likert(items=TSR_data[, 6], drop=FALSE) #likert_test <- likert(subject_data) likert(items=TSR_data[, 6]) #likert_test <- likert(subject_data) Understanding_data <- TSR_data[, 6:17] View(Understanding_data) likert_test_understand <- likert(Understanding_data$GoodunderstandingofTheology) likert_test_understand <- likert(Understanding_data) understanding_data <- TSR_data[, 6] understanding_data <- TSR_data[, 6] l24g <- likert(understanding_data) TSR_data <- read.csv("./data/TSR data complete.csv") understanding_data <- TSR_data[, 6] likert_test_understand <- likert(understanding_data) as.data.frame(TSR_data) #likert_test <- likert(subject_data) understanding_data <- as.data.frame(TSR_data) View(understanding_mean) View(understanding_mean) View(understanding_data) View(understanding_data) likert_test_understand <- likert(understanding_data) keysubjects_data <- subject_data[subject_data$Subject == "Philosophy" | subject_data$Subject == "Ethics" | subject_data$Subject == "Theology" | subject_data$Subject == "Religious Studies", ] recode_interest <- ifelse(3 <= keysubjects_data$Interest & keysubjects_data$Interest >=5, "Positive", "Negative") keysubjects_data <- cbind(keysubjects_data, recode_interest) keysubjects_data$recode_interest <- factor(keysubjects_data$recode_interest) table(keysubjects_data$recode_interest, keysubjects_data$Subject) View(keysubjects_data) recode_interest <- ifelse(2 <= keysubjects_data$Interest & keysubjects_data$Interest >=4, "Positive", "Negative") keysubjects_data <- cbind(keysubjects_data, recode_interest) keysubjects_data$recode_interest <- factor(keysubjects_data$recode_interest) table(keysubjects_data$recode_interest, keysubjects_data$Subject) View(keysubjects_data) keysubjects_data <- subject_data[subject_data$Subject == "Philosophy" | subject_data$Subject == "Ethics" | subject_data$Subject == "Theology" | subject_data$Subject == "Religious Studies", ] recode_interest <- ifelse(2 <= keysubjects_data$Interest & keysubjects_data$Interest >=4, "Positive", "Negative") keysubjects_data <- cbind(keysubjects_data, recode_interest) keysubjects_data$recode_interest <- factor(keysubjects_data$recode_interest) table(keysubjects_data$recode_interest, keysubjects_data$Subject) write.csv(table(keysubjects_data$recode_interest, keysubjects_data$Subject), "derivedData/interest_table.csv", row.names=TRUE) interest_table <- table(keysubjects_data$recode_interest, keysubjects_data$Subject) write.csv(interest_table, "derivedData/interest_table.csv", row.names=TRUE) derivedData write.csv(interest_table, "derivedData/interest_table.csv", row.names=TRUE) # Set up local workspace: if (dir.exists("data") == FALSE) { dir.create("data") } if (dir.exists("figures") == FALSE) { dir.create("figures") } if (dir.exists("derivedData") == FALSE) { dir.create("derivedData") } # export table to csv write.csv(interest_table, "derivedData/interest_table.csv", row.names=TRUE) ### Philosophy ### Philos_subset_Low <- TSR_data[TSR_data$GoodunderstandingofPhilosophy < 3 & TSR_data$GoodunderstandingofPhilosophy != 0, ] Philos_subset_High <- TSR_data[TSR_data$GoodunderstandingofPhilosophy > 3, ] # Low interest cohort Philos_subset_Low <- TSR_data[TSR_data$GoodunderstandingofPhilosophy < 3 & TSR_data$GoodunderstandingofPhilosophy != 0, ] # High interest cohort Philos_subset_High <- TSR_data[TSR_data$GoodunderstandingofPhilosophy > 3, ] # Low understanding of philosophy cohort Philos_subset_Low <- TSR_data[TSR_data$GoodunderstandingofPhilosophy < 3 & TSR_data$GoodunderstandingofPhilosophy != 0, ] # High understanding of philosophy cohort Philos_subset_High <- TSR_data[TSR_data$GoodunderstandingofPhilosophy > 3, ] subject_data$Subject keysubjects_data <- subject_data[subject_data$Subject == "Philosophy" | subject_data$Subject == "Ethics" | subject_data$Subject == "Theology" | subject_data$Subject == "Religious Studies" | subject_data$Subject == "Sociology", ] recode_interest <- ifelse(2 <= keysubjects_data$Interest & keysubjects_data$Interest >=4, "Positive", "Negative") keysubjects_data <- cbind(keysubjects_data, recode_interest) keysubjects_data$recode_interest <- factor(keysubjects_data$recode_interest) interest_table <- table(keysubjects_data$recode_interest, keysubjects_data$Subject) # export table to csv write.csv(interest_table, "derivedData/interest_table.csv", row.names=TRUE) keysubjects_data <- subject_data[subject_data$Subject == "Philosophy" | subject_data$Subject == "Ethics" | subject_data$Subject == "Theology" | subject_data$Subject == "Religious Studies" | subject_data$Subject == "Sociology" | subject_data$Subject == "Psychology" | subject_data$Subject == "History" | subject_data$Subject == "Politics" | subject_data$Subject == "English" | subject_data$Subject == "Math" | subject_data$Subject == "Computer Science" | subject_data$Subject == "Business", ] recode_interest <- ifelse(2 <= keysubjects_data$Interest & keysubjects_data$Interest >=4, "Positive", "Negative") keysubjects_data <- cbind(keysubjects_data, recode_interest) keysubjects_data$recode_interest <- factor(keysubjects_data$recode_interest) interest_table <- table(keysubjects_data$recode_interest, keysubjects_data$Subject) # export table to csv write.csv(interest_table, "derivedData/interest_table.csv", row.names=TRUE) keysubjects_data$Interest prop.table(keysubjects_data$Interest) keysubjects_data View(subject_data) TSR_data_theology_positive <- TSR_data$InterestedinstudyingTheology >=4 TSR_data_theology_positive TSR_data_theology_positive <- TSR_data$InterestedinstudyingTheology[] >=4 library(dplyr) TSR_data_theology_positive %>% filter(TSR_data, InterestedinstudyingTheology >= 4) TSR_data$InterestedinstudyingTheology TSR_data$InterestedinstudyingTheology >4 TSR_data$InterestedinstudyingTheology >3 count(TSR_data$InterestedinstudyingTheology >3) length(TSR_data$InterestedinstudyingTheology >3) # TSR_data_theology_positive %>% filter(TSR_data, InterestedinstudyingTheology >= 4) length(TSR_data$InterestedinstudyingTheology >3) # TSR_data_theology_positive %>% filter(TSR_data, InterestedinstudyingTheology >= 4) filter(TSR_data, InterestedinstudyingTheology == 4) filter(TSR_data, InterestedinstudyingTheology >= 4) TSR_data_theology_positive %>% filter(TSR_data, InterestedinstudyingTheology >= 4) TSR_data_theology_positive <- filter(TSR_data, InterestedinstudyingTheology >= 4) View(TSR_data_theology_positive) TSR_data_theology_positive <- filter(TSR_data, InterestedinstudyingTheology < 3) TSR_data_theology_positive <- filter(TSR_data, InterestedinstudyingTheology < 3) TSR_data_theology_positive <- filter(TSR_data, InterestedinstudyingTheology > 3) TSR_data_theology_positive <- filter(TSR_data, InterestedinstudyingTheology > 2) TSR_data_theology_positive <- filter(TSR_data, InterestedinstudyingTheology > 2) TSR_data_theology_positive <- filter(TSR_data, InterestedinstudyingTheology < 3) TSR_data_theology_positive <- filter(TSR_data, InterestedinstudyingTheology < 2) TSR_data_theology_positive <- filter(TSR_data, InterestedinstudyingTheology < 1) TSR_data_theology_positive <- filter(TSR_data, InterestedinstudyingTheology >= 4) TSR_data_theology_negative <- filter(TSR_data, InterestedinstudyingTheology <= 2) TSR_data_theology_positive <- filter(TSR_data, InterestedinstudyingTheology >= 4 & InterestedinstudyingTheology != 0) TSR_data_theology_negative <- filter(TSR_data, InterestedinstudyingTheology <= 2 & InterestedinstudyingTheology != 0) TSR_data_rs_positive <- filter(TSR_data, InterestedinstudyingReligion >= 4 & InterestedinstudyingReligion != 0) TSR_data_rs_positive <- filter(TSR_data, InterestedinstudyingReligiousStudies >= 4 & InterestedinstudyingReligiousStudies != 0) TSR_data_rs_negative <- filter(TSR_data, InterestedinstudyingReligiousStudies <= 2 & InterestedinstudyingReligiousStudies != 0) knitr::opts_chunk$set(echo = TRUE) library(ggplot2) library(devtools) library(usethis) library(devtools) library(likert) # Load RColorBrewer # install.packages("RColorBrewer") library(RColorBrewer) library("stringr") # Load stringr package, used for wrapping label text in plots library(dplyr) # Used for filtering below # Define colour palettes for plots below coul3 <- brewer.pal(3, "RdYlBu") # Using RdYlBu range to generate 3 colour palette: https://colorbrewer2.org/#type=diverging&scheme=RdYlBu&n=5 TSR_data <- read.csv("./data/TSR data complete.csv") subject_data <- read.csv("./data/Subject data.csv") # Set up local workspace: if (dir.exists("data") == FALSE) { dir.create("data") } if (dir.exists("figures") == FALSE) { dir.create("figures") } if (dir.exists("derivedData") == FALSE) { dir.create("derivedData") } TSR_data_theology_positive_summaries_religion <- factor(TSR_data_theology_positive$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other")) TSR_data_theology_positive_summaries_religion <- factor(TSR_data_theology_positive$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other")) TSR_data_theology_negative_summaries_religion <- factor(TSR_data_theology_negative$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other")) TSR_data_rs_positive_summaries_religion <- factor(TSR_data_rs_positive$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other")) TSR_data_rs_positive_summaries_religion <- factor(TSR_data_rs_negative$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other")) Religious_affiliation_bar2 <- ggplot(TSR_data, aes(TSR_data_theology_positive_summaries_religion)) + geom_bar() + coord_flip() Religious_affiliation_bar2 + labs(title = "Respondent religious self-identification", x = "", y = "") Religious_affiliation_bar2 <- ggplot(TSR_data_theology_positive, aes(TSR_data_theology_positive_summaries_religion)) + geom_bar() + coord_flip() Religious_affiliation_bar2 + labs(title = "Respondent religious self-identification", x = "", y = "") # save to png file for reports ggsave("figures/TSR_data_summaries_religion_theologypositive.png") TSR_data_rs_positive_summaries_religion <- factor(TSR_data_rs_positive$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other")) TSR_data_rs_negative_summaries_religion <- factor(TSR_data_rs_negative$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other")) Religious_affiliation_bar3 <- ggplot(TSR_data_rs_positive, aes(TSR_data_rs_positive_summaries_religion)) + geom_bar() + coord_flip() Religious_affiliation_bar3 + labs(title = "Respondent religious self-identification", x = "", y = "") # save to png file for reports ggsave("figures/TSR_data_summaries_religion_theologypositive.png") Religious_affiliation_bar2 <- ggplot(TSR_data_theology_positive, aes(TSR_data_theology_positive_summaries_religion)) + geom_bar() + coord_flip() Religious_affiliation_bar2 + labs(title = "Respondent religious self-identification (positive sentiment towards "theology")", x = "", y = "") # save to png file for reports ggsave("figures/TSR_data_summaries_religion_theologypositive.png") Religious_affiliation_bar2 + labs(title = "Respondent religious self-identification - positive sentiment towards theology"), x = "", y = "") " Religious_affiliation_bar2 + labs(title = "Respondent religious self-identification - positive sentiment towards theology", x = "", y = "") Religious_affiliation_bar2 + labs(title = "Respondent religious self-identification, positive sentiment towards theology", x = "", y = "") Religious_affiliation_bar2 <- ggplot(TSR_data_theology_positive, aes(TSR_data_theology_positive_summaries_religion)) + geom_bar() + coord_flip() Religious_affiliation_bar2 + labs(title = "Respondent religious self-identification, positive sentiment towards theology", x = "", y = "") # save to png file for reports ggsave("figures/TSR_data_summaries_religion_theologypositive.png") Religious_affiliation_bar3 <- ggplot(TSR_data_rs_positive, aes(TSR_data_rs_positive_summaries_religion)) + geom_bar() + coord_flip() Religious_affiliation_bar3 + labs(title = "Respondent religious self-identification, positive sentiment towards rs", x = "", y = "") # save to png file for reports ggsave("figures/TSR_data_summaries_religion_rspositive.png") library(scales) # Used for adding percentages to bar charts Religious_affiliation_bar3 <- ggplot(TSR_data_rs_positive, aes(TSR_data_rs_positive_summaries_religion, label=scales::percent(pct))) + geom_bar() + coord_flip() Religious_affiliation_bar3 + labs(title = "Respondent religious self-identification, positive sentiment towards rs", x = "", y = "") Religious_affiliation_bar3 <- ggplot(TSR_data_rs_positive, aes(TSR_data_rs_positive_summaries_religion) + geom_bar() + geom_text(label=scales::percent(pct))) + coord_flip()