diff --git a/tsr_survey_analysis.Rmd b/tsr_survey_analysis.Rmd index 24d9063..da3d496 100644 --- a/tsr_survey_analysis.Rmd +++ b/tsr_survey_analysis.Rmd @@ -14,12 +14,25 @@ library(likert) # install.packages("RColorBrewer") library(RColorBrewer) library("stringr") # Load stringr package, used for wrapping label text in plots +library(dplyr) # Used for filtering below +library(scales) # Used for adding percentages to bar charts # Define colour palettes for plots below coul3 <- brewer.pal(3, "RdYlBu") # Using RdYlBu range to generate 3 colour palette: https://colorbrewer2.org/#type=diverging&scheme=RdYlBu&n=5 TSR_data <- read.csv("./data/TSR data complete.csv") subject_data <- read.csv("./data/Subject data.csv") + +# Set up local workspace: +if (dir.exists("data") == FALSE) { + dir.create("data") +} +if (dir.exists("figures") == FALSE) { + dir.create("figures") +} +if (dir.exists("derivedData") == FALSE) { + dir.create("derivedData") +} ``` # Basic demographic summary visualisations: @@ -71,11 +84,55 @@ ggsave("figures/TSR_data_summaries_ethnicity.png") TSR_data_summaries_religion <- factor(TSR_data$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other")) +# Adding a subset for charting out composition of group which specifically marked positive sentiments wrt/ theology or religious studies + +TSR_data_theology_positive <- filter(TSR_data, InterestedinstudyingTheology >= 4 & InterestedinstudyingTheology != 0) +TSR_data_theology_negative <- filter(TSR_data, InterestedinstudyingTheology <= 2 & InterestedinstudyingTheology != 0) + +TSR_data_rs_positive <- filter(TSR_data, InterestedinstudyingReligiousStudies >= 4 & InterestedinstudyingReligiousStudies != 0) +TSR_data_rs_negative <- filter(TSR_data, InterestedinstudyingReligiousStudies <= 2 & InterestedinstudyingReligiousStudies != 0) + +TSR_data_theology_positive_summaries_religion <- factor(TSR_data_theology_positive$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other")) + +TSR_data_theology_negative_summaries_religion <- factor(TSR_data_theology_negative$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other")) + +TSR_data_rs_positive_summaries_religion <- factor(TSR_data_rs_positive$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other")) + +TSR_data_rs_negative_summaries_religion <- factor(TSR_data_rs_negative$ReligiousAffliation, levels = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), labels = c("Agnostic", "Atheist", "Baha'i", "Buddhist", "Christian", "Confucian", "Jain", "Jewish", "Hindu", "Indigenous Traditional Religious", "Muslim", "Pagan", "Shinto", "Sikh", "Spiritual but not religious", "Zoroastrian", "No religion", "Prefer not to say", "Other")) + +# Calculate graphs + Religious_affiliation_bar <- ggplot(TSR_data, aes(TSR_data_summaries_religion)) + geom_bar() + coord_flip() Religious_affiliation_bar + labs(title = "Respondent religious self-identification", x = "", y = "") # save to png file for reports ggsave("figures/TSR_data_summaries_religion.png") +# Additional graphs for theology/rs positive sentiment cohorts + +# Theology + +# JK note: need to add percentages to each line, as per https://stackoverflow.com/questions/52373049/display-percentage-on-ggplot-bar-chart-in-r + +Religious_affiliation_bar2 <- ggplot(TSR_data_theology_positive, aes(TSR_data_theology_positive_summaries_religion)) + geom_bar() + coord_flip() +Religious_affiliation_bar2 + labs(title = "Respondent religious self-identification, positive sentiment towards theology", x = "", y = "") +# save to png file for reports +ggsave("figures/TSR_data_summaries_religion_theologypositive.png") + +# RS + +Religious_affiliation_bar3 <- ggplot(TSR_data_rs_positive, aes(TSR_data_rs_positive_summaries_religion)) + geom_bar() + coord_flip() +Religious_affiliation_bar3 + labs(title = "Respondent religious self-identification, positive sentiment towards rs", x = "", y = "") +# save to png file for reports +ggsave("figures/TSR_data_summaries_religion_rspositive.png") + +irisNew <- iris %>% group_by(Species) %>% + summarize(count = n()) %>% # count records by species + mutate(pct = count/sum(count)) # find percent of total + +ggplot(irisNew, aes(Species, pct, fill = Species)) + + geom_bar(stat='identity') + + geom_text(aes(label=scales::percent(pct)), position = position_stack(vjust = .5))+ + scale_y_continuous(labels = scales::percent) ``` # Visualisations of LIKERT responses (RH): @@ -138,14 +195,18 @@ Employability_data <- TSR_data[, 30:41] ```{r Visualization for 4 Key Subjects} ## Subset by "Positive" / "Negative" -keysubjects_data <- subject_data[subject_data$Subject == "Philosophy" | subject_data$Subject == "Ethics" | subject_data$Subject == "Theology" | subject_data$Subject == "Religious Studies", ] +keysubjects_data <- subject_data[subject_data$Subject == "Philosophy" | subject_data$Subject == "Ethics" | subject_data$Subject == "Theology" | subject_data$Subject == "Religious Studies" | subject_data$Subject == "Sociology" | subject_data$Subject == "Psychology" | subject_data$Subject == "History" | subject_data$Subject == "Politics" | subject_data$Subject == "English" | subject_data$Subject == "Math" | subject_data$Subject == "Computer Science" | subject_data$Subject == "Business", ] recode_interest <- ifelse(2 <= keysubjects_data$Interest & keysubjects_data$Interest >=4, "Positive", "Negative") keysubjects_data <- cbind(keysubjects_data, recode_interest) keysubjects_data$recode_interest <- factor(keysubjects_data$recode_interest) -table(keysubjects_data$recode_interest, keysubjects_data$Subject) +interest_table <- table(keysubjects_data$recode_interest, keysubjects_data$Subject) +# export table to csv +write.csv(interest_table, "derivedData/interest_table.csv", row.names=TRUE) + + ``` - subsetted visualisations of responses with separate subsetting by response to Q8-9, Q18, Q17, Q16 @@ -415,8 +476,11 @@ mean(as.numeric(Busi_subset_High$InterestedinstudyingReligiousStudies), na.rm = ```{r Philosophy} ### Philosophy ### + +# Low understanding of philosophy cohort Philos_subset_Low <- TSR_data[TSR_data$GoodunderstandingofPhilosophy < 3 & TSR_data$GoodunderstandingofPhilosophy != 0, ] +# High understanding of philosophy cohort Philos_subset_High <- TSR_data[TSR_data$GoodunderstandingofPhilosophy > 3, ] ## Theology Knowledge