--- title: "Connect Project" output: html_document --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) ``` ## R Markdown This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see . When you click the **Knit** button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this: ```{r cars} summary(cars) ``` ## Including Plots You can also embed plots, for example: ```{r pressure, echo=FALSE} plot(pressure) ``` Note that the `echo = FALSE` parameter was added to the code chunk to prevent printing of the R code that generated the plot. ### To Do List ## Upload Data ```{r Data Upload} connect_data = read.csv("connectDATA.csv") ``` ## Summary of Data Data summary/visualisation with subsetting: - RH: display simple summary of data (bar/pie chart) to Q25/26, Q3 ```{r Frequencies} #Frequencies# Q25_frequencies = table(connect_data$Q25) Q25_frequencies Q26_freq = table(connect_data$Q26) Q26_freq Q3_freq = table(connect_data$Q3) Q3_freq #test3 = as.factor(connect_data$Q3, levels = c(1, 2, 3, 4, 5), labels = c("Worldviews", "Religion", "Theology", "Ethics", "Philosophy")) ``` ```{r Q25 bar/pie} pie(Q25_frequencies, labels = c("Maybe", "No", "Yes")) ``` pie(Q25_frequencies, labels = c("Maybe", "No", "Yes")) # rough draft of piechart ```{r Q26 bar/pie} ``` pie(Q26_freq) #very messy as a pie chart - split by type? Or is it important to see crossover ```{r Q3 bar/pie} Q3_data <- read.csv("Q3.csv") ``` pie(Q3_freq) #also not optimal as pie...perhaps bar - RH: display summaries of responses to key questions for Q22 (syllabus evaluation), Q23, Q24, Q25, Q26, Q27, with subsetting by: - Q8 (school type) - Q9 (school size) - Q10 (school location) - Q1 (grade level) + Q35 (teaching role) + +Q5 (teaching proportion) Q2 (tenure) + and Q3 (subjects taught), + Q6/Q7 (management) - Q12-14 (school's official religion) / Q15-16 (school's informal religion) - Q21 (respondent personal religious background) - Q4 (teacher's degree subject) - Q18 (respondent gender) - Q19 (respondent ethnic self-desc) ```{r Plots} # Q22 # Q23 # Q24 # Q25 # Q26 # Q27 ``` ## Correlation testing: - RH: test for correlation between "social issue" box ticked on Q20 and responses to Q22, Q23, Q27 - Make Q20 a factor with 14 levels - Collapse 2 Q22 columns into one mean for analyses - Analyse 1 way anova Q20 (14 levels) by Q22; Q23[1-2]; Q27[1-7] ```{r Correlation 1} ``` - RH: test for correlation between responses to religion questions: Q12-14, Q15-16 and Q21 and responses to Q22, Q23, Q24, Q25, Q27, Q30