--- title: "Connect Project" output: html_document --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE) # Load RColorBrewer # install.packages("RColorBrewer") library(RColorBrewer) # Define colour palettes for plots below 3clr <- brewer.pal(3, "RdYlBu") # Using RdYlBu range to generate 3 colour palette: https://colorbrewer2.org/#type=diverging&scheme=RdYlBu&n=5 ``` Note that the `echo = FALSE` parameter was added to the code chunk to prevent printing of the R code that generated the plot. ### To Do List ## Upload Data ```{r Data Upload} connect_data = read.csv("./data/connectDATA.csv") ``` ## Summary of Data Data summary/visualisation with subsetting: - RH: display simple summary of data (bar/pie chart) to Q25/26, Q3 ```{r Frequencies} #Frequencies# Q25_frequencies = table(connect_data$Q25) Q25_frequencies Q26_freq = table(connect_data$Q26) Q26_freq Q3_freq = table(connect_data$Q3) Q3_freq #test3 = as.factor(connect_data$Q3, levels = c(1, 2, 3, 4, 5), labels = c("Worldviews", "Religion", "Theology", "Ethics", "Philosophy")) ``` ```{r Q25 bar/pie} pie(Q25_frequencies, labels = c("Maybe", "No", "Yes"), col = 3clr) ``` pie(Q25_frequencies, labels = c("Maybe", "No", "Yes")) # rough draft of piechart ```{r Q26 bar/pie} Q26_data <- read.csv("./data/Q26_data.csv") Q26_freq_data <- data.frame(c("Other Priorities", "Lack Subject Knowledge", "Lack Confidence", "Current Syllabus", "Pupil Disinterest", "Department Head", "Available Work Schemes", "Unavailable Resources", "Uncertain of Pedagogical Approach"), c(table(Q26_data[,2]) [names(table(Q26_data[,2])) == "TRUE"], table(Q26_data[,3]) [names(table(Q26_data[,3])) == "TRUE"], table(Q26_data[,4]) [names(table(Q26_data[,4])) == "TRUE"], table(Q26_data[,5]) [names(table(Q26_data[,5])) == "TRUE"], table(Q26_data[,6]) [names(table(Q26_data[,6])) == "TRUE"], table(Q26_data[,7]) [names(table(Q26_data[,7])) == "TRUE"], table(Q26_data[,8]) [names(table(Q26_data[,8])) == "TRUE"], table(Q26_data[,9]) [names(table(Q26_data[,9])) == "TRUE"], table(Q26_data[,10]) [names(table(Q26_data[,10])) == "TRUE"])) head(Q26_freq_data) names(Q26_freq_data)[1] <- "Reasons" names(Q26_freq_data)[2] <- "Frequency" head(Q26_freq_data) pie(Q26_freq_data$Frequency, labels = c("Other Priorities", "Lack Subject Knowledge", "Lack Confidence", "Current Syllabus", "Pupil Disinterest", "Department Head", "Available Work Schemes", "Unavailable Resources", "Uncertain of Pedagogical Approach")) ``` pie(Q26_freq) #very messy as a pie chart - split by type? Or is it important to see crossover ```{r Q3 bar/pie} Q3_data <- read.csv("./data/Q3.csv") #head(Q3_data) #table(Q3_data [,3:7]) #pie(table(Q3_data [,3:7])) Q3_data2 <- Q3_data[,3:7] #head(Q3_data2) #table(Q3_data2) #table(Q3_data2[,1]) ### want to take only the count of "True" (1) in each column. Then pie chart of the frequencies #Q3_data3 <- read.csv("~/Documents/Github/re_connect_survey/data/Q3 copydata.csv") #table(Q3_data3) #count(Q3_data3, 1) #table(Q3_data3) [names(table(Q3_data3)) == 1] #table(Q3_data3) table(Q3_data2[,1]) [names(table(Q3_data2[,1])) == "TRUE"] test2 <- data.frame(c("Worldviews", "Religion", "Theology", "Ethics", "Philosophy"), c(table(Q3_data2[,1]) [names(table(Q3_data2[,1])) == "TRUE"], table(Q3_data2[,2]) [names(table(Q3_data2[,2])) == "TRUE"], table(Q3_data2[,3]) [names(table(Q3_data2[,3])) == "TRUE"], table(Q3_data2[,4]) [names(table(Q3_data2[,4])) == "TRUE"], table(Q3_data2[,5]) [names(table(Q3_data2[,5])) == "TRUE"])) head(test2) names(test2)[1] <- "Subject" names(test2)[2] <- "Frequency" head(test2) pie(test2$Frequency, labels = c("Worldviews", "Religion", "Theology", "Ethics", "Philosophy")) ``` pie(Q3_freq) #also not optimal as pie...perhaps bar #sum(Q3_data2) Q3_1factor = as.factor(Q3_data2$Religion) table(Q3_1factor) #count(Q3_1factor, "TRUE") #test = replace(Q3_1factor, "TRUE", 1) #test #Q3_1factor - RH: display summaries of responses to key questions for Q22 (syllabus evaluation), Q23, Q24, Q25, Q26, Q27, with subsetting by: - Q8 (school type) - Q9 (school size) - Q10 (school location) - Q1 (grade level) + Q35 (teaching role) + +Q5 (teaching proportion) Q2 (tenure) + and Q3 (subjects taught), + Q6/Q7 (management) - Q12-14 (school's official religion) / Q15-16 (school's informal religion) - Q21 (respondent personal religious background) - Q4 (teacher's degree subject) - Q18 (respondent gender) - Q19 (respondent ethnic self-desc) ```{r Plots} # Q22 # Q23 # Q24 # Q25 # Q26 # Q27 ``` ## Correlation testing: - RH: test for correlation between "social issue" box ticked on Q20 and responses to Q22, Q23, Q27 - Make Q20 a factor with 14 levels - Collapse 2 Q22 columns into one mean for analyses - Analyse 1 way anova Q20 (14 levels) by Q22; Q23[1-2]; Q27[1-7] ```{r Correlation 1} ``` - RH: test for correlation between responses to religion questions: Q12-14, Q15-16 and Q21 and responses to Q22, Q23, Q27, [Q24, Q25, Q30]