diff --git a/mapping_draft.Rmd b/mapping_draft.Rmd index 7e9e7a5..5655e54 100644 --- a/mapping_draft.Rmd +++ b/mapping_draft.Rmd @@ -430,6 +430,8 @@ download.file("http://sedsh127.sedsh.gov.uk/Atom_data/ScotGov/ZippedShapefiles/S unzip("data/SG_UrbanRural_2016.zip", exdir = "data") urbanrural <- readOGR("./data", "SG_UrbanRural_2016") +# TODO: worth considering uploading data to zenodo for long-term reproducibility as ScotGov shuffles this stuff around periodically breaking URLs + # This code will generate a table of frequencies for each spatialpointsdataframe in urbanrural # calculate count of ECS for fields in urbanrural urbanrural$ecs_count <- poly.counts(ecs,urbanrural) @@ -449,9 +451,10 @@ urbanrural$permaculture_percent<- prop.table(urbanrural$permaculture_count) # Create dataframe for analysis urbanrural_df<-data.frame(urbanrural) + # Create bar chart -qplot(OBJECTID, data=urbanrural_df, geom = "bar") -ggplot(urbanrural_df) aes(x=OBJECTID, geom_bar(position="fill")) +# TODO: use ggplot here to generate stacked bar chart showing representation across 8 urban/rural bands from urbanrural_df +# TODO: generate map based on urbanrural ``` Rather than bifurcate congregations into an urban/rural dichotomy, for this study we used the Scottish Government's eight-point remoteness scale to categorise eco-congregations along a spectrum of highly populated to remote areas. This 8-fold scale (calculated biennially) offers a more nuanced measurement that combines measurements of remoteness and population along the following lines: