diff --git a/mapping_draft.Rmd b/mapping_draft.Rmd index 66224b7..05df5fb 100644 --- a/mapping_draft.Rmd +++ b/mapping_draft.Rmd @@ -283,10 +283,9 @@ Perhaps the first important question to ask of these groups is, where are they? # Row 1 plot using polygons from admin_lev1 and row 2 plot using ploygons from admin_lev2 # 3. Need to clip choropleth polygons to buildings shapefile -plot(admin_lev1) - -myplot <- ggplot() + geom_sf(data = admin_lev1_sf) + geom_point(data=as.data.frame(ecs), aes(x=X, y=Y)) -# + geom_point(data=as.data.frame(ecs), aes(x=X, y=Y)) +admin_lev1_gathered <- gather(admin_lev1_sf, value="number", ecs_count) + +myplot <- ggplot() + geom_sf(data = admin_lev1_gathered) + geom_point(data=as.data.frame(ecs), aes(x=X, y=Y)) ggsave("figures/admin_choropleth_ecs.pdf") ``` @@ -313,16 +312,18 @@ Whereas our initial measurements indicated a prominent lead for Edinburgh, by no ```{r create_admin_barplot} # comvert admin back to dataframe for analysis admin.df <- data.frame(admin_lev1) -admin.df_gathered <- gather(admin.df, key = "name", convert = TRUE) -admin.df<-data.frame(admin_lev1) + # Goal here is to generate a grouped bar plot; https://www.r-graph-gallery.com/48-grouped-barplot-with-ggplot2/ # Need to flatten admin_lev1 based on all the count columns and generate using ggplot admin.df_gathered <- gather(admin.df, key="group_type", value="number", ecs_count, transition_count, dtas_count) ggplot(admin.df_gathered, aes(fill=group_type, y=number, x=name)) + - geom_bar(position="dodge", stat="identity") + geom_bar(position="dodge", stat="identity") + coord_flip() + # ggplot(mtcars, aes(x=as.factor(cyl), fill=as.factor(cyl) )) + + geom_bar() + + coord_flip() ```