From 8ad4dca354bd2e0ac9e818a1425627d54d447401 Mon Sep 17 00:00:00 2001 From: Jeremy Kidwell Date: Thu, 5 Oct 2023 20:14:02 +0100 Subject: [PATCH] updated ch1 and ch2 --- hacking_religion/_book/chapter_1.html | 1025 ----------------- .../figure-html/unnamed-chunk-6-1.png | Bin 52389 -> 0 bytes .../figure-html/unnamed-chunk-7-1.png | Bin 49149 -> 0 bytes .../figure-html/unnamed-chunk-7-2.png | Bin 52848 -> 0 bytes hacking_religion/chapter_1.qmd | 157 ++- hacking_religion/chapter_2.qmd | 20 +- 6 files changed, 160 insertions(+), 1042 deletions(-) delete mode 100644 hacking_religion/_book/chapter_1.html delete mode 100644 hacking_religion/_book/chapter_1_files/figure-html/unnamed-chunk-6-1.png delete mode 100644 hacking_religion/_book/chapter_1_files/figure-html/unnamed-chunk-7-1.png delete mode 100644 hacking_religion/_book/chapter_1_files/figure-html/unnamed-chunk-7-2.png diff --git a/hacking_religion/_book/chapter_1.html b/hacking_religion/_book/chapter_1.html deleted file mode 100644 index 2a5fc6f..0000000 --- a/hacking_religion/_book/chapter_1.html +++ /dev/null @@ -1,1025 +0,0 @@ - - - - - - - - - -Hacking Religion: TRS & Data Science in Action - 2  The 2021 UK Census - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
-
- -
- -
- - -
- - - -
- -
-
-

2  The 2021 UK Census

-
- - - -
- - - - -
- - -
- -
-

2.1 Your first project: the UK Census

-

Let’s start by importing some data into R. Because R is what is called an object-oriented programming language, we’ll always take our information and give it a home inside a named object. There are many different kinds of objects, which you can specify, but usually R will assign a type that seems to fit best.

-

If you’d like to explore this all in a bit more depth, you can find a very helpful summary in R for Data Science, chapter 8, “data import”.
-

In the example below, we’re going to read in data from a comma separated value file (“csv”) which has rows of information on separate lines in a text file with each column separated by a comma. This is one of the standard plain text file formats. R has a function you can use to import this efficiently called “read.csv”. Each line of code in R usually starts with the object, and then follows with instructions on what we’re going to put inside it, where that comes from, and how to format it:

-
-
setwd("/Users/kidwellj/gits/hacking_religion_textbook/hacking_religion")
-library(here) # much better way to manage working paths in R across multiple instances
-
-
here() starts at /Users/kidwellj/gits/hacking_religion_textbook
-
-
library(tidyverse)
-
-
-- Attaching core tidyverse packages ------------------------ tidyverse 2.0.0 --
-v dplyr     1.1.3     v readr     2.1.4
-v forcats   1.0.0     v stringr   1.5.0
-v ggplot2   3.4.3     v tibble    3.2.1
-v lubridate 1.9.3     v tidyr     1.3.0
-v purrr     1.0.2     
-
-
-
-- Conflicts ------------------------------------------ tidyverse_conflicts() --
-x dplyr::filter() masks stats::filter()
-x dplyr::lag()    masks stats::lag()
-i Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
-
-
here::i_am("chapter_1.qmd")
-
-
here() starts at /Users/kidwellj/gits/hacking_religion_textbook/hacking_religion
-
-
uk_census_2021_religion <- read.csv(here("example_data", "census2021-ts030-rgn.csv")) 
-
-
-
-

2.2 Examining data:

-

What’s in the table? You can take a quick look at either the top of the data frame, or the bottom using one of the following commands:

-
-
head(uk_census_2021_religion)
-
-
                 geography   total no_religion christian buddhist  hindu jewish
-1               North East 2647012     1058122   1343948     7026  10924   4389
-2               North West 7417397     2419624   3895779    23028  49749  33285
-3 Yorkshire and The Humber 5480774     2161185   2461519    15803  29243   9355
-4            East Midlands 4880054     1950354   2214151    14521 120345   4313
-5            West Midlands 5950756     1955003   2770559    18804  88116   4394
-6                     East 6335072     2544509   2955071    26814  86631  42012
-  muslim   sikh other no_response
-1  72102   7206  9950      133345
-2 563105  11862 28103      392862
-3 442533  24034 23618      313484
-4 210766  53950 24813      286841
-5 569963 172398 31805      339714
-6 234744  24284 36380      384627
-
-
-

This is actually a fairly ugly table, so I’ll use an R tool called kable to give you prettier tables in the future, like this:

-
-
knitr::kable(head(uk_census_2021_religion))
-
- ------------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
geographytotalno_religionchristianbuddhisthindujewishmuslimsikhotherno_response
North East26470121058122134394870261092443897210272069950133345
North West7417397241962438957792302849749332855631051186228103392862
Yorkshire and The Humber548077421611852461519158032924393554425332403423618313484
East Midlands4880054195035422141511452112034543132107665395024813286841
West Midlands5950756195500327705591880488116439456996317239831805339714
East6335072254450929550712681486631420122347442428436380384627
-
-
-

You can see how I’ve nested the previous command inside the kable command. For reference, in some cases when you’re working with really complex scripts with many different libraries and functions, they may end up with functions that have the same name. You can specify the library where the function is meant to come from by preceding it with :: as we’ve done knitr:: above. The same kind of output can be gotten using tail:

-
-
knitr::kable(tail(uk_census_2021_religion))
-
- -------------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
geographytotalno_religionchristianbuddhisthindujewishmuslimsikhotherno_response
5West Midlands5950756195500327705591880488116439456996317239831805339714
6East6335072254450929550712681486631420122347442428436380384627
7London87997282380404357768177425453034145466131875414454386759615662
8South East92780683733094431331954433154748186823090677434854098566279
9South West5701186251336926358722457927746738780152746536884367732
10Wales3107494144639813547731007512242204466947404815926195041
-
-
-
-
-

2.3 Parsing and Exploring your data

-

The first thing you’re going to want to do is to take a smaller subset of a large data set, either by filtering out certain columns or rows. Now let’s say we want to just work with the data from the West Midlands, and we’d like to omit some of the columns. We can choose a specific range of columns using select, like this:

-

You can use the filter command to do this. To give an example, filter can pick a single row in the following way:

-
-
uk_census_2021_religion_wmids <- uk_census_2021_religion %>% filter(geography=="West Midlands")  
-
-

Now we’ll use select in a different way to narrow our data to specific columns that are needed (no totals!).

-

Some readers will want to pause here and check out Hadley Wickham’s “R For Data Science” book, in the section, “Data visualisation” to get a fuller explanation of how to explore your data.
-

In keeping with my goal to demonstrate data science through examples, we’re going to move on to producing some snappy looking charts for this data.

-
-
-

2.4 Making your first data visulation: the humble bar chart

-

We’ve got a nice lean set of data, so now it’s time to visualise this. We’ll start by making a pie chart:

-
-
uk_census_2021_religion_wmids <- uk_census_2021_religion_wmids %>% select(no_religion:no_response)
-uk_census_2021_religion_wmids <- gather(uk_census_2021_religion_wmids)
-
-

There are two basic ways to do visualisations in R. You can work with basic functions in R, often called “base R” or you can work with an alternative library called ggplot:

-
-

2.4.1 Base R

-
-
df <- uk_census_2021_religion_wmids[order(uk_census_2021_religion_wmids$value,decreasing = TRUE),]
-barplot(height=df$value, names=df$key)
-
-

-
-
-
-
-

2.4.2 GGPlot

-
-
ggplot(uk_census_2021_religion_wmids, aes(x = key, y = value)) +
-  geom_bar(stat = "identity")
-
-
-
2
-
-We’ll re-order the column by size. -
-
-
-
-

-
-
2ggplot(uk_census_2021_religion_wmids, aes(x= reorder(key,-value),value)) + geom_bar(stat ="identity")
-
-

-
-
-

Let’s assume we’re working with a data set that doesn’t include a “totals” column and that we might want to get sums for each column. This is pretty easy to do in R:

-
-
1uk_census_2021_religion_totals <- uk_census_2021_religion %>% select(no_religion:no_response)
-uk_census_2021_religion_totals <- uk_census_2021_religion_totals %>%
-2   summarise(across(everything(), ~ sum(., na.rm = TRUE)))
-3uk_census_2021_religion_totals <- gather(uk_census_2021_religion_totals)
-4ggplot(uk_census_2021_religion_totals, aes(x= reorder(key,-value),value)) + geom_bar(stat ="identity")
-
-
-
1
-
-First, remove the column with region names and the totals for the regions as we want just integer data. -
-
2
-
-Second calculate the totals. In this example we use the tidyverse library dplyr(), but you can also do this using base R with colsums() like this: uk_census_2021_religion_totals <- colSums(uk_census_2021_religion_totals, na.rm = TRUE). The downside with base R is that you’ll also need to convert the result into a dataframe for ggplot like this: uk_census_2021_religion_totals <- as.data.frame(uk_census_2021_religion_totals) -
-
3
-
-In order to visualise this data using ggplot, we need to shift this data from wide to long format. This is a quick job using gather() -
-
4
-
-Now plot it out and have a look! -
-
-
-
-

-
-
-

You might have noticed that these two dataframes give us somewhat different results. But with data science, it’s much more interesting to compare these two side-by-side in a visualisation. We can join these two dataframes and plot the bars side by side using bind() - which can be done by columns with cbind() and rows using rbind():

-
-
uk_census_2021_religion_merged <- rbind(uk_census_2021_religion_totals, uk_census_2021_religion_wmids)
-
-

Do you notice there’s going to be a problem here? How can we tell one set from the other? We need to add in something idenfiable first! This isn’t too hard to do as we can simply create a new column for each with identifiable information before we bind them:

-
-
uk_census_2021_religion_totals$dataset <- c("totals")
-uk_census_2021_religion_wmids$dataset <- c("wmids")
-uk_census_2021_religion_merged <- rbind(uk_census_2021_religion_totals, uk_census_2021_religion_wmids)
-
-

Now we’re ready to plot out our data as a grouped barplot:

-
-
ggplot(uk_census_2021_religion_merged, aes(fill=dataset, x= reorder(key,-value), value)) + geom_bar(position="dodge", stat ="identity")
-
-

-
-
-

If you’re looking closely, you will notice that I’ve added two elements to our previous ggplot. I’ve asked ggplot to fill in the columns with reference to the dataset column we’ve just created. Then I’ve also asked ggplot to alter the position="dodge" which places bars side by side rather than stacked on top of one another. You can give it a try without this instruction to see how this works. We will use stacked bars in a later chapter, so remember this feature.

-

If you inspect our chart, you can see that we’re getting closer, but it’s not really that helpful to compare the totals. What we need to do is get percentages that can be compared side by side. This is easy to do using another dplyr feature mutate:

-
-
uk_census_2021_religion_totals <- uk_census_2021_religion_totals %>% 
-  dplyr::mutate(perc = scales::percent(value / sum(value), accuracy = 0.1, trim = FALSE))
-uk_census_2021_religion_wmids <- uk_census_2021_religion_wmids %>% 
-  dplyr::mutate(perc = scales::percent(value / sum(value), accuracy = 0.1, trim = FALSE))
-uk_census_2021_religion_merged <- rbind(uk_census_2021_religion_totals, uk_census_2021_religion_wmids)
-ggplot(uk_census_2021_religion_merged, aes(fill=dataset, x=key, y=perc)) + geom_bar(position="dodge", stat ="identity")
-
-

-
-
-

Now you can see a very rough comparison, which sets bars from the W Midlands data and overall data side by side for each category. The same principles that we’ve used here can be applied to draw in more data. You could, for example, compare census data from different years, e.g. 2001 2011 and 2021. Our use of dplyr::mutate above can be repeated to add an infinite number of further series’ which can be plotted in bar groups.

-

We’ll draw this data into comparison with later sets in the next chapter. But the one glaring issue which remains for our chart is that it’s lacking in really any aesthetic refinements. This is where ggplot really shines as a tool as you can add all sorts of things.

-

These are basically just added to our ggplot code. So, for example, let’s say we want to improve the colours used for our bars. You can specify the formatting for the fill on the scale using scale_fill_brewer. This uses a particular tool (and a personal favourite of mine) called colorbrewer. Part of my appreciation of this tool is that you can pick colours which are not just visually pleasing, and produce useful contrast / complementary schemes, but you can also work proactively to accommodate colourblindness. Working with colour schemes which can be divergent in a visually obvious way will be even more important when we work on geospatial data and maps in a later chapter.

-
-
ggplot(uk_census_2021_religion_merged, aes(fill=dataset, x=key, y=perc)) + geom_bar(position="dodge", stat ="identity") + scale_fill_brewer(palette = "Set1")
-
-

-
-
-

We might also want to add a border to our bars to make them more visually striking (notice the addition of color to the geom_bar below. I’ve also added reorder() to the x value to sort descending from the largest to smallest.

-

You can find more information about reordering ggplots on the R Graph gallery.
-
-
uk_census_2021_religion_merged$dataset <- factor(uk_census_2021_religion_merged$dataset, levels = c('wmids', 'totals'))
-ggplot(uk_census_2021_religion_merged, aes(fill=fct_reorder(dataset, value), x=reorder(key,-value),value, y=perc)) + geom_bar(position="dodge", stat ="identity", colour = "black") + scale_fill_brewer(palette = "Set1")
-
-

-
-
-

We can fine tune a few other visual features here as well, like adding a title with ggtitle and a them with some prettier fonts with theme_ipsum() (which requires the hrbrthemes() library). We can also remove the x and y axis labels (not the data labels, which are rather important).

-
-
ggplot(uk_census_2021_religion_merged, aes(fill=fct_reorder(dataset, value), x=reorder(key,-value),value, y=perc)) + geom_bar(position="dodge", stat ="identity", colour = "black") + scale_fill_brewer(palette = "Set1") + ggtitle("Religious Affiliation in the UK: 2021") + xlab("") + ylab("")
-
-

-
-
-
-
-
-

2.5 Is your chart accurate? Telling the truth in data science

-

There is some technical work yet to be done fine-tuning the visualisation of our chart here. But I’d like to pause for a moment and consider an ethical question. Is the title of this chart truthful and accurate? On one hand, it is a straight-forward reference to the nature of the question asked on the 2021 census survey instrument. However, as you will see in the next chapter, large data sets from the same year which asked a fairly similar question yield different results. Part of this could be attributed to the amount of non-respose to this specific question which, in the 2021 census is between 5-6% across many demographics. It’s possible (though perhaps unlikely) that all those non-responses were Sikh respondents who felt uncomfortable identifying themselves on such a survey. If even half of the non-responses were of this nature, this would dramatically shift the results especially in comparison to other minority groups. So there is some work for us to do here in representing non-response as a category on the census. But it’s equally possible that someone might feel uncertain when answering, but nonetheless land on a particular decision marking “Christian” when they wondered if they should instead tick “no religion. Some surveys attempt to capture uncertainty in this way, asking respondents to mark how confident they are about their answers, but the census hasn’t capture this so we simply don’t know. If a large portion of respondents in the”Christian” category were hovering between this and another response, again, they might shift their answers when responding on a different day, perhaps having just had a conversation with a friend which shifted their thinking. Even the inertia of survey design can have an effect on this, so responding to other questions in a particular way, thinking about ethnic identity, for example, can prime a person to think about their religious identity in a different or more focussed way, altering their response to the question. For this reason, some survey instruments randomise the order of questions. This hasn’t been done on the census (which would have been quite hard work given that most of the instruments were printed hard copies!), so again, we can’t really be sure if those answers given are stable. Finally, researchers have also found that when people are asked to mark their religious affiliation, sometimes they can prefer to mark more than one answer. A person might consider themselves to be “Muslim” but also “Spiritual but not religious” preferring the combination of those identities. It is also the case that respondents can identify with more unexpected hybrid religious identities, such as “Christian” and “Hindu”. The census only allows respondents to tick a single box for the religion category. It is worth noting that, in contrast, the responses for ethnicity allow for combinations. Given that this is the case, it’s impossible to know which way a person went at the fork in the road as they were forced to choose just one half of this kind of hybrid identity. Finally, it is interesting to wonder exactly what it means for a person when they tick a box like this. Is it because they attend synagogue on a weekly basis? Some persons would consider weekly attendance at workship a prerequisite for membership in a group, but others would not. Indeed we can infer from surveys and research which aims to track rates of participation in weekly worship that many people who tick boxes for particular religious identities on the census have never attended a worship service at all.

-

What does this mean for our results? Are they completely unreliable and invalid? I don’t think this is the case or that taking a clear-eyed look at the force and stability of our underlying data should be cause for despair. Instead, the most appropriate response is humility. Someone has made a statement which is recorded in the census, of this we can be sure. They felt it to be an accurate response on some level based on the information they had at the time. And with regard to the census, it is a massive, almost completely population level, sample so there is additional validity there. The easiest way to represent all this reality in the form of speaking truthfully about our data is to acknowledge that however valid it may seem, it is nonetheless a snapshot. For this reason, I would always advise that the best title for a chart is one which specifies the data set. We should also probably do something different with those non-responses:

-
-
ggplot(uk_census_2021_religion_merged, aes(fill=fct_reorder(dataset, value), x=reorder(key,-value),value, y=perc)) + geom_bar(position="dodge", stat ="identity", colour = "black") + scale_fill_brewer(palette = "Set1") + ggtitle("Religious Affiliation in the 2021 Census of England and Wales") + xlab("") + ylab("")
-
-

-
-
-

Change orientation of X axis labels + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))

-

Relabel fields Simplify y-axis labels Add percentage text to bars (or maybe save for next chapter?)

-
-
-

2.6 Making our script reproducible

-

Let’s take a moment to review our hacker code. I’ve just spent some time addressing how we can be truthful in our data science work. We haven’t done much yet to talk abour reproducibility.

-
-
-

2.7 Multifactor Visualisation

-

One element of R data analysis that can get really interesting is working with multiple variables. Above we’ve looked at the breakdown of religious affiliation across the whole of England and Wales (Scotland operates an independent census), and by placing this data alongside a specific region, we’ve already made a basic entry into working with multiple variables but this can get much more interesting. Adding an additional quantative variable (also known as bivariate data) into the mix, however can also generate a lot more information and we have to think about visualising it in different ways which can still communicate with visual clarity in spite of the additional visual noise which is inevitable with enhanced complexity. Let’s have a look at the way that religion in England and Wales breaks down by ethnicity.

-
-
library(nomisr)
-
-# Process to explore nomis() data for specific datasets
-religion_search <- nomis_search(name = "*Religion*")
-religion_measures <- nomis_get_metadata("NM_529_1", "measures")
-tibble::glimpse(religion_measures)
-
-
Rows: 2
-Columns: 3
-$ id             <chr> "20100", "20301"
-$ label.en       <chr> "value", "percent"
-$ description.en <chr> "value", "percent"
-
-
religion_geography <- nomis_get_metadata("NM_529_1", "geography", "TYPE")
-
-# Get table of Census 2011 religion data from nomis
-z <- nomis_get_data(id = "NM_529_1", time = "latest", geography = "TYPE499", measures=c(20301))
-# Filter down to simplified dataset with England / Wales and percentages without totals
-uk_census_2011_religion <- filter(z, GEOGRAPHY_NAME=="England and Wales" & RURAL_URBAN_NAME=="Total" & C_RELPUK11_NAME != "All categories: Religion")
-# Drop unnecessary columns
-uk_census_2011_religion <- select(uk_census_2011_religion, C_RELPUK11_NAME, OBS_VALUE)
-# Plot results
-plot1 <- ggplot(uk_census_2011_religion, aes(x = C_RELPUK11_NAME, y = OBS_VALUE)) + geom_bar(stat = "identity") + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))
-ggsave(filename = "plot.png", plot = plot1)
-
-
Saving 7 x 5 in image
-
-
# grab data from nomis for 2011 census religion / ethnicity table
-z1 <- nomis_get_data(id = "NM_659_1", time = "latest", geography = "TYPE499", measures=c(20100))
-# select relevant columns
-uk_census_2011_religion_ethnicitity <- select(z1, GEOGRAPHY_NAME, C_RELPUK11_NAME, C_ETHPUK11_NAME, OBS_VALUE)
-# Filter down to simplified dataset with England / Wales and percentages without totals
-uk_census_2011_religion_ethnicitity <- filter(uk_census_2011_religion_ethnicitity, GEOGRAPHY_NAME=="England and Wales" & C_RELPUK11_NAME != "All categories: Religion" & C_ETHPUK11_NAME != "All categories: Ethnic group")
-# Simplify data to only include general totals and omit subcategories
-uk_census_2011_religion_ethnicitity <- uk_census_2011_religion_ethnicitity %>% filter(grepl('Total', C_ETHPUK11_NAME))
-
-ggplot(uk_census_2011_religion_ethnicitity, aes(fill=C_ETHPUK11_NAME, x=C_RELPUK11_NAME, y=OBS_VALUE)) + geom_bar(position="dodge", stat ="identity", colour = "black") + scale_fill_brewer(palette = "Set1") + ggtitle("Religious Affiliation in the 2021 Census of England and Wales") + xlab("") + ylab("") + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))
-
-

-
-
-

The trouble with using grouped bars here, as you can see, is that there are quite sharp disparities which make it hard to compare in meaningful ways. We could use logarithmic rather than linear scaling as an option, but this is hard for many general public audiences to apprecaite without guidance. One alternative quick fix is to extract data from “white” respondents which can then be placed in a separate chart with a different scale.

-
-
# Filter down to simplified dataset with England / Wales and percentages without totals
-uk_census_2011_religion_ethnicitity_white <- filter(uk_census_2011_religion_ethnicitity, C_ETHPUK11_NAME == "White: Total")
-uk_census_2011_religion_ethnicitity_nonwhite <- filter(uk_census_2011_religion_ethnicitity, C_ETHPUK11_NAME != "White: Total")
-
-ggplot(uk_census_2011_religion_ethnicitity_nonwhite, aes(fill=C_ETHPUK11_NAME, x=C_RELPUK11_NAME, y=OBS_VALUE)) + geom_bar(position="dodge", stat ="identity", colour = "black") + scale_fill_brewer(palette = "Set1") + ggtitle("Religious Affiliation in the 2021 Census of England and Wales") + xlab("") + ylab("") + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))
-
-

-
-
-

This still doesn’t quite render with as much visual clarity and communication as I’d like. For a better look, we can use a technique in R called “faceting” to create a series of small charts which can be viewed alongside one another.

-
-
ggplot(uk_census_2011_religion_ethnicitity_nonwhite, aes(x=C_RELPUK11_NAME, y=OBS_VALUE)) + geom_bar(position="dodge", stat ="identity", colour = "black") + facet_wrap(~C_ETHPUK11_NAME, ncol = 2) + scale_fill_brewer(palette = "Set1") + ggtitle("Religious Affiliation in the 2011 Census of England and Wales") + xlab("") + ylab("") + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1))
-
-

-
-
- -
-
-

References

- - - -
- -
- - -
- - - - \ No newline at end of file diff --git a/hacking_religion/_book/chapter_1_files/figure-html/unnamed-chunk-6-1.png b/hacking_religion/_book/chapter_1_files/figure-html/unnamed-chunk-6-1.png deleted file mode 100644 index 0476cf6a40cdd3b5c8d080dfe10638bfbafe96d1..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 52389 zcmeEvc{r8(+b@!oigt!lhO$ctl_}#|)i#t+gb<3vGA8p(?IuDcWL(OWgv|5MfFiTZ z^Sn&UJT9F3somb~?RkH{bKdJZ=Y7vP{^+_~R_pOR-{=0`!{_t4@9)D4in2SlF>fOy zBinIS?l)yJvdvgBvQ0(QRPdXb8+FZOWRyE`XU<$OIU{?SvmE>hb5% z_AuOGfnHJ+j!TOE6y3X5U4C6_TJJay7{`x!@xDyE@RIV*k%j6d*%!4;TSu}5Qgi*X zO!CXy76(F!u7e#`;~g}QvyN&7bR42M%ACmCU)PgbI`HwMnDslC>K!iCygWYs-2R8j z_w~LnY#Af6mvl7FWzMe|jwD`?C4bO&69bUDs&H6zSA1<|+Zp|PYw{?<( zOglI4?yYT;QXlnIo$~e%S;xH=sVU-#tq(G!>%3!c^G>3yWc)W$`f=URZ8omTq1y*& zS;@M3xOv|?&U3K7RlspSDEC%35-y#3u#h#tc!R=aoYxR1)>thXeZ%wA(Q&Wdsa(kja^$z45%6Jj4Jg*_U zQzfg0*PnN#RTZDZi_kSyHC36E`8S&Dh`E@nd*#Zg;d2|T2-d$EG8^++e`=`@yH&OJ zUU#tZt?rzy)4x!=Kh{;*~gZ{jTKu5AUzbD-AK+`+e&*en(r8_}$)2+PPGvZ!NCJ zyS#B{inAIuf0NqKjkzQfK*i}C(@PZCq-fszJI7hf-h+3|avgskn~kw`m6vQu@+h&I zG?mz_=d9~2C`FHXfAh}XPOpNCqm%Ww2r1<|dmiD!($a&6JwJTz>($$qbb_04dw)^H zk&&FC-2F8%JJSP=`pMopojCd4;_T`QQ>#O?ffb(WB#BdeUNb|Kw(HHN>Sd#HVRysc zd?MK!sTlh?WqZz#dYu#}zux)qPF;z)DxPg*R?FV}PzPC)bH2{n@`|I&^rrewvaE=; zO>2kjX^Qn5%E3XLG`M{BhJpeaH~dUZMt&bhMhQQW!#`&DM@B{wLGj}^o3Rm_e*CCE$*N2N_WLUDZzn!{dPd?gi@kq5*8?#DVx7RR6S`JI;Nk=EIrMbG9OXzY9`vX$? z0pa@R84}gMY~gj=G4WAzTQXIPj0w$ItBcI6?owUbo;7SyJ$8(v#Qnq^?S*Umf9)=r zQoriXH9xOi-YKcM=j8NY=)30Wme1L#^HNSp>5V31%Y7A^hC3Xl*UYYQVBN{cDJZGw z*nj!~OTO87Thn2MgFpT5&;NyGq;q%N_4hA)|M18gce1p%+VR)^ak+1wQe*Qsq5Ym- z4NIokl=$`7KW_s07G*@ox|>6Ozm12TjMuc$cn{jA6c>o!@8{=7g5TU_pmS%;FcEr$ z_9^)*JCubW^LW3F8cWlf&MbrSsXJM{IO+;r+e{g8cT95!+Tvo#hFSh`W8an~;w=S5 z^?Tcdd%I9RWha~6`L{Rp$0J<0OipfeEm!RW+UtPVv<2<=8?WiR9bz|L(|7CL*iGNv z$i{B^?k+Z*-XC6lBQ|{x${VrikKntJLVQm=Hd2U<6yk4L^hOG?kwW}j3T>ni|F@(N z^^6$?o1(5YCh7Wyh**@|*+M%N`{Kocd$eqFI7T6a(Q2^L+n_w4_~{{ey-$x1@aMEGZrkd-w%q9p z-;psiG`xH6(s>I?sR<9-kFuDhnvS+%)_>vv*t1tZg{)cdur$X77kTd!=@Gy$o_8KI z(RIQNEv9U-hpVx<&B(gZ%LnqgG#eC*L>A@PjPz8kj#e#Q_H13|e!NQF_1TZpg|}qo z9{@xVJJT_WG&UV~txWUc_jhS};a_x1tz2cYerd_?TX*Z#zq(k{)U;=IcGjW(nyjpB zTfUP>OKWRnLIN+Vq~kN9Jco?>o6EbL=0+dRjx+|ArKo6lWS-7+m>ww3?OYizV@yml z-)9Wxv}oby!PSV^AiT=!hg{nckP_lxwqVP3d?7dBY)-n zH{T3N{e`XM@kQ#VCl49ymvTNC91=3k5U-x(6A%y}=T`TsYTVSu#^#C4!SU8iexLoK zzYtEE!HRgtD&cKosT)y%hdpTkR&d*`1PK`4+JO_irb&7g6Eok3+ZENGYd1Jm`=FLb zJ@L{afkA0KY;yG~&5V@yzNWG9%vg-el69iV;#7ZhO^8dJ^Vip^(XISCd6!!<&#eEV zd(kxf)j%W-$l9ABd-CJDw7mW<7-Dahir28{d|nYFJe%v|r5nh+?=zb8L%wX8}uyuvwYG zqdmtD9##mhkDY2ezy3BOhLE+HpU5z4oq9IwhmMZ}hLo($9GU+l))KEE?)!DHN9zl4ek`1b6V zbhH)}7M3}4=8Uzit;{xgVn_bIv9U2rSk99+!d1Gp9BoP_5pdF8O#D9J5o8p+-{nfCTS=~4tD>&m zk6+HJ;FB~`54W_m=q=BU9l!DAIqO$VU0r-^6`Q1^pknCBU4(gz*+0zwn~6R{_Fvw` z;>0~d#+OFhvIX1{b@G{cd3h}fwb2sok_x^`9A`#`hxLZ4UmQ1WdMj5q7^@h@EO6t? zr$O#H_H8Ht1hi)AS2zHXPSC3AdrN)QM|SzkqnP4N3K{pgGl3mBHav`cSN1URT{-eKK<1VY zi@5ON^UvvUHVY*sC9jf_s$Lj^chlKhke@FJx7$+_DZ5x8sApa5$&hSV6@IzU)g|tz zINEwy^RknTwM6R~5<3gozytHH^Ik7GmBK$Zry5SDEv_uj%Zhcpy>{k&(1}Az5Bcp1 zi6~33{RX*8SA5$t?CHw7b`_yNJQYdAdug;%OW-B zeq}B_S3C&4W3$GplKI^(IOA zjD?FKh0TLg^eDwimjRSffrLw4xsc-yDhKfE>M-Xw2kNOOX!>uezEo1|#k72gOktK( z>PC{)WnIp8T3aQq>5wgjdhTAIsQQCwK}~ZeXev=VH=ybf8)h}g!qM*Jt-eqDqhdNK zToxv-5w{V#wQ)-;hEmf(p69dI?qC+~EDWm`G80{hPEHH-e4Oj=vf2tNsHzG_YuVtJ zuB)U)l6VB3)W_*$ZK2K-%QeeII^X(6BQ+-{s%Nm)b5_6PQJh@%nfp5vh~XZ;S(#z~0mUau24lJl+B%`JDih+DvwiV}= zK%5&q-EqJrBs{HVhH4N{WXFyjHO4w zq_ye&e?k$kh#rZckI>G&G&4F-5yHW%Q(s^IjEOJDj;OO=-1exOqh?J{u~%=`yE_+E z^e4=f#;&YK5socTMj5Tt51KT*d6cvGnPimzz=IG0|^H!yN});Btnk z#!-!wU+-<-JN2?W48=~dU3mKqJT5U)8{^hKj*REvUd~r#O`Ln3)Xw&m! z*G@+jKVjatk0W6&{B#wdA9=@=ot&I>L{~Rz%5QGzzYzY~NYpkGHFoU(6#ONjwE|#G zukPBcE&_^A-eDuLcg!Z*6+3lIha=!~-k6z%)7-7n^`VxMI`20u+0rke=bUE~EL?b2 z`*l|jG0nCXuCz|hWfta_>#<>6_vhMqe_&ce z%HRbL$@eQF7c)ShFQzQV*FKj~8Qh3YonE@j>AGHr4OvXn4go^D7ro$HMFe`P>C7o=YNxf`t<6@|fy}$;r{hDtvPxEq1V?n?O%Zcl9 z0N`hpPY7sF$QRDYiyl!pfNPOjTdW!^Tt$V3(U9!cEe$NjVc{3w~Xn<{WE+t0YbAfHgO^wzlr$TqxQiRh__j zmg7`i1LOdMRd`~9Bp(_Ydl~uW+d)}hRuy-jpgPlaZs*%h^b)W?n0S*!BeH!P6~zjW;83dPj)ApDHdi}97yO~ zaE^bQW`B`+Yp_&O{#=Vz>~v?9+v+r!%%g>-QYkgDHDt>b%tZ4SBZfR!8CE{nIhT>? zuXcxD+XywQ8U*0G>dB?K-?s6)5$9d`?+4<(&Sgqj3*L?bWF&6~A z$4RU6g=~I@6}YwiY**)pCpct%9s&6M5$HbGKIScGzTpqNc-XLWvC>Xvi9|d$4Sd6- zK4wlIqdfoWVr0*}+uFQ-_xrn()0nmCn(FEaj!tou4UFw7hNO$Bb!J%vvkLq4N*Jyt zs>)^Dsw&LxHd@j-MIqGBZ@C%mQ7Nfn+;;(K&z?4V4ZJ5vhu9!6?)(zi5eZ7Hc#q+rt9zSmo%r$VIj5z%!%cQQT6h1a#4 z$@PG+dD~^?=4M*osBLH);WTUn+V(tv$WPwv!p6ne<@K^0$JIvd0rw#_4^a8Sd!_<9 z0mI5i0DV78Oht1X*iNt}muViS`NiqMUW81YvcU~6Ben=RqPN>}rkfYSnzF4;vXvs_ z$UGCj&Ldq?u`d1X0970E^~>xrz7-5=uzn=IV9Gz~Bdy!QhgS&+-WIOYA<25hp0DB- zE#~N*&6`sWfqNu=e6&~K77J3+vC=ReeE?bOOpc<+FDQmE(TVVFg%e+B<(juI!h7S_6#+IkPzM9M{G?^i zZ=|-Wl`93~_*DYFhl6cVj#YB0cAv}H^<0a45e?#MqvF0W`LbauH|MX6S@3IJ)z{Z2 z&FZe%kiJxr&KJy$=&m`E#)+%u&C6HT`&q0zwh*nfwJ2@kFb*^+)9f1+UB+x=qB1YRbk;O(6QVxKX7asiIdI2 zNK`6CVkBalJEbt-n+6G!1{T&R21HJwffzRb`vR9`Jt%#$V-N$xuPx$B!G+|iPIF=w zKiiL`H@*b*fvyFmQD)N>l=Wc;zqZ^hy+D9>deUjm6p6^<9g{v+dd0yfnKzOiDmfpl z3=?N!TdKaF?8u=0{|_ z7JX(B)Ra(lcNNjGDtDXw=PO$n71>R`m!ax`Uu$z zk7oFL6yIlk2$T!winG~vEsPps_8~bw2%c6yEq3fDRdkXRLP2r`QkI&K)^?NxDMA)} zBdg_(N-x98(7gnehhv4SBZarfTB@rrJnVUPYJFVpil$&Z<;dmBkLLIGe1gk)v^j-` zq50uJ@U^;Sz4B?U?8j*Ot#a^Cjt`}rlCxy*g1mEuKCj9LJSFuQBxSr`?L_wLuGx0Ua zRY;lI*eRU?szfIDf)>6D;y;Hsssy{$6EEA8fGjdt#T#Kp5k2jx08p)KdOjn2Yv%d*i6_1(-igv@_rl>aAtpb6386416Oiy$38{`X0SFzmG;?zzw5}JT}pJCA20UUw511V79gaU2@BF% zW@cvRLxgz;D#P}b2k?Hw2p=Cfqhp;tjS@+yB{;5bBMGp770a{il|gEREX!WK_8gm< zwl-4jgn*06Y641LEsrb`=IR5`V{=aNe~q-zmT_R&tafp;(G-D zo*Bz?h?e@W?Av|#{DX^;GSW~e);Bf|R;NZra*Tgha@I67FanuXHXpq!l1J^$0|2i+ zF3pa}8#JSkhu9yw192ciS1#vRnwDH?+&h$;o*x zVxcqopArrK$r*Dhd9jam<5u^3VoE6^TOMM z2Hd}|502Q2P|K^1HzPGOGk}jg$|}Lic*fJ`5IUDzIp*}=V$kM9eEJ_B>_R{oDgVJ6Ki%d@e2UkPSpYvSDh+q6mVH0dtTiC^ zjh(gi$1;DOY2$H#6~-+SAd31*dofBcg=D0gG|pvhM}?+LDbnvGyjyAS5Zvqv&z%e+ z{4A?M#hrY0z~fHq4}1x7pdTEniHuB6KF-X{{4zCFK>4!c{CK;Og@rFHEmFb)sGdGE z#6{hntS?Jw`d1j?P;*6yh^%JbtGGC>+V|3M887`(pME7J9?d*^%l#7e$Bd1)cZ|h_ zjr=WB__l6Tcz5~){E~A;un=PJz;ycp2s-nsVQFbe!etfi(X!{`L%G5=9O{P81K_UT zo7=V+phG=CNf)hVhrb%(a1TL?+D{nAIXW}%)dbBbf+T}(UOHF`V>4X;{J6f1lzQ@( zi*!GyB7b=NQwQ0}T%=hf;qU$jrTEv~$2J!@W}N#+R`Jb^bTI(EyyPj~1v}Lel&ba< zU8h!~{JTKS8Xj8|d)Kcvd7V5TJcdUHq^?eb4I{a=L}ykYdXxG(T3UkL=BK6aer;$d zNyF9Yjkjedn>MFhPPu+|``#0M(t+YAd)B>30OZY>Kd9c{R8&+R?Gxc^NYG-csHouI zfvK|swRlOk)u0~e#YM@&q+A^LV_fqzeP3Pq$t-`E;@#aygG9~@d_VbS_xr4y-KXO+ z1fN=gKK%H#_rJ@y+Yr|FjUz1fq+FO;Obx8Mby;pR#2)#&MJ(K%_(1a!zz!HJ4%C{Ps)y4%cL(MmJ zS_Wq@|1Y~x9sY{Yf7O2ByWUdQ{;2qLHoLZEStgse=NOrryW$pt!XqI^Mra|ZEGx)| zfJN;EO82YdZ~Z8wQxYkoO=ea%yJl@YSqvV6CNiEe1UQ%wbd4J6W^|7;LF zZqbp~lxd;6U-Z_mwU#Xi#tL}dnBuNPlydZ#5zti$w;J)HR)-rOyA}%Yx?WPLTmB-- zdpiwQaG^d{%3t=GPWG)shn2#w^fQv|CUMbABAw2uRW_1PmsJ@YSr4JQW9^_WYxf`S zw*jcO(vDBJAWzUSHBh?0RqdNB*!m{afv#JzZi9BNoCwW4)1Qpb1-Zw{xYb}N3XgRG z2fEB?X*?ISS(+?HF-*UzqhJGt;8eM|1a^`7*|qOX?i%uO^T6Mlb&GF(!qST zx%YP4dgKCom2T_84p4gA{!c4{gFe)P1Y8D0pH~W;MHR!u7!nc^qB#{#4ME%Cxl-F7 z{`jwrM@=`R2@jesFI@#Km!h>j(h3R+4&5&i3;`gVqVKj*rpufd>`rl)_P~hYmbH`^)a&L%s)6Q&t=H>^xv>pdwgzW_jl3`*XYYr8~@g zzL~Pis%)E+(X~sp`hvPb3I*p5gx>Oz5@-tvC?pT>qR#JoD(^|m zU$?p-KSN|3Mh=0&ieWGU!1J9K;MgI0T`wV`L_=GRsM95_>Mub8b)dbg?Rv*dR5LML zpXGRXaI$+g$S;%Lq*k5-P1SiOU1v*X5%Vjm(L47EA03f$t5Xn(ZZ*&4EndMKLQ9gw zn5rq#tRjPXkv9LdtM6`)CIhUN=DawS23;j@a-FPweFG3LsQ@wbJjj*K)wrxa*Y`QA z5_A4@%-1&uPoSwpv6Ph9eQA-t5>ub(X&0p9RzL@0HCk}!`m6MLx(okew)LFk;fcsnc#@A0VfIr9pcfiwCuh%e^ z*%|J-I*m8f$X{+JDsEx5zuIgHlD9Cv{F&NOq#NG0e7{ZoMHolRS59@tSfq{;ZJo-t zQM(5i#I=94aPHlQt9dD{aSys@xb~5G*L1@*!W!Oa)Lna5xH_9uXQI2@A_xhBHHiIU z0vK}>&m0x_u`hm#bEG8qBbs+G+aQ_}z6eyc@h^y)wWOK$%>(ZcOYO5d6_Z3L>g*$VS6@ho3E;bN^#;BQ|mfE~DnOr4$qqEUon}mH0K%plRCtks)sjXMM+F z9-WKHU(V1<3Tiv_`!}Dc;dKS#gdtGGZ@r-uVVUU2%(^(Q!t5Fxz`+_jbVxl+c5#Pm zei5t%l~~Ag+unwQ+Ut*ie|ZDjC5pU zO)-b9rktDyf{MGOVd+>KuUIKai8>YZc=FUj5mDRPF_+OZBg^XW>o*H3*=KPcNiAb& z_nwG4$?R--iXUyYj5y)JeWEgUAGBWt=`e;yr{vYxVsH0-Ha@NDaG~A7_Jhe2WlQf`Lpp{|DMRkVb2y=qC+jK~06jWUF zfe)FYBR>F}CWfSvKsJ~Z8swqWEkE3Bj*?45YPf&TMdmMU8D?5yUGAIac$~gGKTZH$ z_SInE4;&ZEb;DsyQbDJ)1=_>@VH!GktLjr*(s=}^6mmvW%3BmfJl2~nnMdVjD!YOQ zhtMv>UL6V>qawSrJ{awreALwLw&b4={^TnD6e|nHLd>ul7fDBBDk5m$vf9`bl(7=z z6ct?XszR3)5>Sc?x}n=xd8UA5Ia*2(TKIv@Iz2v98ox?VavQdf5k{mx161O=)7Vxg?h}w0MJq9ZJ>Cet7tt^>g}&1XMOWjFbphW! z(yRGp)_~thL$koyAz0MvhGw#!wD1ZG(Oy>b?bTD3dr=MYm9P7$$HTojx`|cxB?7hc zg=;G_psdA&tS0-q9Bp@99$V(^-LbyZBd16QKa-G;Yu+#G&Fo(Qy{$1IQ!$*UbQ#g= z42IHJ(^g|Q+S0x9hBsoiKlfQV2w-bx3g+|qwQPZoCcKVM9Ika_M2U{r2q$<^?N%dm znwG>WFy`wcx|YQZgwLG#QCl4~lzt6tL<&3?_j0}ScwP8h+6*EbZ?~>f(C8RxOj0Uk zbuz6ee{ulrvADLn3wNp9Bu$pa+RLH6$a-}w)56kH8LCc+3WA<6oo>y4@I|t;f`VIU zGNlL)c)%SW)dkURX_f(2Iw`3QZ8eP|U^O>QGAN*71umPxEJk?j&@7D^l*uhvXKA!_ z;({&&f{jPqc#G?eYQs=B_Tqo+ZZwBO^4pg06eVPK1Q(F{`C}Uz8dxnVA>~YwV09x+ zvJM_X(;S9D)U!Q&-E|2f58gbh`(E(5H`=)wF^iv3PAb5Pf^)jX9W%yxbM~uxY-V0R zFRl|BA{2;~A^a``c`nUo(7v579ph7(RvJF^l(>Py9t6{v&J58LQDMUzr1F={G*3zgyfV#xvM25O z=cj4F)zA~g&%wM;LX*C)LMfY@b1=v!p*UA#2J}eQD+KjD?IYLjYIUz483Rn{83Kdu z#E>SeD@6yRK<22r-Bm^s5#_2SUI_wv>)B>3j2Q?u&+ZR!RJ~Y$;^3FU+!-VC-^#N& zjV231|8*J=pL)2Or_*mg?39PuIZE)mvoLr^4lt$i+u`DNtIQKL*-8;#!@~DDQ2P2GnF?#1){bZnU>YJ{Pqbh=O4} zhE+AgsXRCsol5w9x1yZ7u8U1h_q~0}dA`=&cbQ_~7HkgDl>dnp{Pn{gIEpC3rek)# z!^uMJbX%bS6^2khV*qtM7$D;jGIb7Na;yGeQ>AmAw} zijuSSdLtF#^sbO_(5t(3d2I1aLWj8XA(%S(1uHh^IamdB?vmYq(a#x12WW4PLZ%5F zb|^#B>bfBX;&eCyxT(E|VGzd3%GPnd9*++K!k+MNz60tiiS^4`a1cAf=hcIcw38VYz)-H8;JdH4BqhF-oYUjkh~9U&GU?mYm*1;$^?Yo{Bl ziY@l}sYu9*Esv(gSAN)rVt7=+*m7)ZS4T(35QQ5dIxvQYFNuF z6*7co&WL_(V=)_00CQ3C2aDU8dwO`ml;QyMg2jQ+i)N>wBm6u}r#*XTi%FhVLRkO$ zoQ5hKFlhd<>C{Rw9y1V@YdcRC<3J~&>MsWU(r=bY3L@>#%yY*w=;zm-{YX20e)6F! zSeoieZ{v)QK+e{}eCw1_5TVyj^_SNH7oIvkULz@`d2c6+n4tH5(G%Vn9b2~*|#Ra0K$GXQ%fS&bQ> z$fYB)H|MZo120~n1 zIrXJjxhF8-P3_-&2LOJa?xm3=CA)STb>DMNfYa424&w3smY)vXM{w?$BN!eO>l-3| z^XMO#w5=~T7`Om2LYS#js*4F^_eT2Bg|#4S#|K*X0$M)5MdBu zcGJSb!rG&7rdGagGt-sF;ozo@-rSp{Br*9>5R~j3OrE2^!-P;##YNJs8D{bz60(|m zl@WnZA28@A>fIfoj)aEFsh|DK_m{Lu2}_?4IJc-_80HT%GoJGmEc6Hh&-MBo3k-H^ za9NEBF+Z2tZmZ?F>~?Pb*D0y3`64zO4ax{<=>hVOdv|+tvpzyB!Gv|(SWCKw-TV+M z8!wQZEWt89`-5Zv3VyjvI$pZpFXnvEQ-yd9>FX#12(G#VVlQkY%jVGcgp2i;^*e-| zVs>}+<^tD@TPTqS8}SadzOelk=ma<<39JVpE;hW3_4qHOcU#y(Z9IHE{Ce`g{Z%-P z6zDqPT&5}5JC6nBu2x5!BKRjc8#s2;=r%<#9|`!`m3{>jLT&JCZ*;E|9%kQE%G}Zg zPTID!%IAa`4tEv-jm1_Mdh14;Q|q7!Mwv8$IQU~1Hh0Vy%tr&|XcJ-Xifc*fT>3cJ&Ngb>X%|Nr;+`OiI@hZuzF(lP#UQ~9Mj-e` zt0;;_TOUUxO~|EFo0(kM<2WFI7rmO1n`COV(CIK3#??vd60I}*bE@TW4lLc@ z+E|d7T*@jBgW~02d^q309$rye@zJ+}uA~Kepn+h3Kgi*ZN>_u@C#?C?1VY9C>s-#m z%^~sxWUh#VLrZG z%VI8SLZI?wWY*FqT8RtJW2nP*#voH_4XL*-gQHxvSx)!;y@Yh5F)5jYzrZWmLhgpu4= z;Q|d!s)0GiUte2Keddg{_pzR9HdGJ0&wv(;1U&*gGT!Cq=htjrt(E6jV7hYilw;3B z&Xgj9JSoWS>R?1>sv4pMRrpp@+^1Cn`&Za?6nYCyV5*6VW~RAz&hmI}9h5)K6jizM4LS#;vH$G>q4MVRIoBNGx=yAr*;}bJ}(mF>51cAjz5GqzBLO>C*jH z=YwI6oN&SohPV@vuNswHr~K++bZCF@7?ZF03W{6w=zvW&#!C?H-~Y{XRy>BOEp}1J z03o4-VI{Yvy5Ip$0hGYi5By+x-17{4(Y}s}doxgKMnmy4CXz31@v?XX%(4!2pSh_y zHYo4&(jhP^2K6zfj=zy>b1Q6_m@V=LlRkr2t^y3kDs zwW>S|lw$lI(j!M?R$juD>=V42X-8<>;UE*y_FLt=v#(z|qxhT|aS+ltT?;H(5itDn z{E1qUj`mSr&0DOtP1l<9kLg=4AXNy+eGE=j!S1-h@uBnq;a|JWb-@k$Z%SZgN-1%9 zP`jRmhSyIy6}nDi>0BM9E`pr@##d^0jpWV4l&4@DJ6}C$Z}fwK!Qqm2hZgpZfawW_ z-F&~5FdUzxDAIQG%$!t=u6_4ip}qc+Q)sG=8TD@oW%EWtxsg!*UFr1ycS8A(yZ}27 zel>TnVJy98UCL;Jk}}ptoVp{X*=CL65-D4#hbTI!qI4|S9EV;YVa$4=`+lrdr6?yN zsM4Dd7)C}Dr@=hyG#FwHbQL5p*5$mJ_3@rlC=K`3M9MU>vAfz!h_8pq%~44^8~PmfX(0PWAE*SP#>p((j*NAUz_F|9d~TO#YRKpMhsMi zna=~6{_*tRa_48D0^ubpr^Z3svQlj5t#ij09NH{Pqd~Z5oXkAukr)vyh*NGjRFFDbfkG-Bd%W4&BWb!r7u0hN?UJ5Q=qMtxmbv{2Qn^n7 z9SK%E+5NjU!vF0v&pJ@NEXSl{f2{>tGt^VwZeQne$vnt;kjzNi4XC~whd!=|>rX_! zyOXQLdWT)xb+KQ=wI&QQzge5a{85ykAef1rkF>1FZ_ig-2CRUSXQW<5i8rHT^lZ0b zsHKeMEJ!3H7FuXfUn^u(86t6nX8;)(F0xpD+$Hqc4y5?S*kNb}Fn$_)9wp@daKA9e z<;J0-@cIuQk`7$jL(NqS5XQgx4vYpcJaolvWtNbbJ3f37=Zjgj7h5Aur%LP;?RzW; zEz7L^h6X6Nx}puWe5KREOE12%oHs-`iYm-?iO_5`4!sPCIrXaXYSDg5QliCHQK?l@ zxx*4~{_YsQ8OPO#t!dlSc8rgWdGk#K>Nw(Zx^C0d?pBg`vYD@U_918Z^BBdj;Pf73 zI3e?Kz2BInob6ix_3^w)fXcWoMzZRF){j{L3L&*{=u>UGT_++HRe9q`d73}F?`e+{ zs*VX6o2J1z8RLcYyd|Ju+l~EAXrwHaQX#ch(_iKyBdgS(M z7gT6-wNjXoH>tHqmFKUn6O@=e5Ioa$ht@W`58{3_wKFoC@ypcElqchN{?X;~RX8My z(4b|Z0K!z4tbmnVW6M)Q<~6(Xm48CwR$w?n8q@sfe+Kny@KRN!|7O*%a*JRrP{)iP zo)k6Sef(jd_PzoG0FG z@_%uyb>$O>ZxqpOZMiwWbf4PR&3|RbLz^K7(7~!ve&0^j$=J4me$gri#ZsE*Doh^B zL{KlfHypAG`U{*JIs>Jri;>}Psz|-+3S)HsFxyx+wy|I? z9S3$sK!lvUytdl+FW*2xycTq!RG@OB2gP4qkYRYxxjXo}7=>~fSD5JR?AbNM@3vTO z-RUxKAe2AbpjDUWFkOqxWTa}mGKu0nmkQwi?#$Pys%!g?=S^3>VT2RUn6(5)y}q$c5uy4IWssvMNC{d3+low`F6 z4XjAO4%ZTjB*(AuDOeokSq^Pb&o!rF&@Nz&s0)%6+6PICRc@6sPQJH0VD4s&dR`9$ zL%GCE^_g$Gf_Ha&4}$PnI-v3X+hKTRHI*xcuxZm{_1%9(mB#ykwToxOEr-H+Xfb;T zlC{8rcM?=NR!<*SbFCn*9a%rW?i(@A>WD(R>q$d+E%)oOv3U_bY^1Qrhc~MufD8=DtOd~74$JPKEYX7Y8bAuU5B3cRIg=) zP-CB8>L5>I)T^^fup1fL^QVNP&sfBm6F-Tg2Oisl?zvgnq z{Jo#Sygy9av*vU+f zkD|cc?pP~C6gudtVuJRhIqb0CHvj5{;%xpq%AWtbJtkJ(N=@r8iT2XdB7I-Ufbqh$ zRe(}j0$&S744;6RcnB~r2m~E@db{us(6>4W9>(zWz@H({n)_z$S2QY zrzj7|xGdYN&qWFE!B5vBIcBBA^cN4WtL5Kn53Dy7l_r#2Kl#NK=`Kiv%v(|omE4*` zW7>VhiFqnyX}I}tPsDh!x(F;N?{r4{FQ+zhz$3}IpNC8H;JJLBn?N)~1GO+~{^Hzs z6IwyKcG!qlLjD>j5Wz|D0ial3Ue^;dAK!|Pu-+^pZ`Y_0`)*a(EfiFzhRI5q8Y#NkuxXtwTJe=nrVF!qi;Xd0xVsJq<;vT3UkDj zzf<|pUGj}hMHtNEQ%)$4xnS(1vFm6;hh?nId8who}QH~@3wg7b1TWBUKv z-w**Jh}%9Ai}svUA9nG`!kZ^3Z@)(x5GfR0fyS~V)qp9&y`oP~IO>ENulR*8w+-6r zo5c%yfl-Cc*Z)L;87ff({2^;X4xzu!dk&OM_``~!mj`*}2zB^X>zv`&@yaG9Ccfp4 z07<1vz**e2y?Mi7@6-#Iz9KD~4Y_+38#UOWYJ;v(CEdj`_2DbQqpjQOM{caC>o^#^ z?*DAq>gc4a!){)u?2EL_(r;Qjo6qwWXrCN<`^jRaT&xyTb6HRc@3Y}29WXz>kweSD z_8{GKXraY3<^1 zeg2%Ibjt#YboyNd;W0)YS%8!T&m0@VX;Td^)d(DNE&AH?{(5L62@Z`(#q3+S#tdg2 zG&n|cO8QIdiFnM+Nhhgpyz7`3?*p$TK2~9K zU763vA6RZTy5dF8G#4qIRDaSVR&oqSfPPNfUharK9q=Rx0@DDJ)k4cbEz+tB$H%zD zl}00tY|Uino?N7~F}9%_vn;;;7fSFKYC^ls+C?y2>hj`^SIQl=lOQvx$}yXZs{9i} zJNk0uPM4vQV8UNe%a3m#qeFV|@&XY(+-L{BhWDt9W#Q6ryowza%LBD2PQ3H2hG4&|F+p?>L3WK1^|(7 z{OC)Xyq^jEAAtmG0O7k#N+@g@+~;wm|CkVLl6V#|=fG*7C$=0DaEwiXKt;G@Zuy7? z+SxAO8j`EOHzfb18{rJMKZww@xw=D$mqL1VA%U*@Asx{RM!gvuc!sYI8mMichkrS? z&3X6OQPm%r`QNf+F?fvOyrZana=Rge7OtsORz=G~Uhf8@sw}TX%dQ2VfIr>%lN$@W zVLlt1UFsp_hf%>Fw(>C|rmtlGA*at}&o^ZeD8&V8jF&U+ZiZ zHRP2#lm04Jf_jF*gGJny-fc_C$PM{f5?;qx#kccQ#f^jl?cFy8iNSu+)H7NhYx8TX zx=Zl4f@OSJ+buF{?)_Pz391!|8tSk3Lj#6~2NVfn)fn=O!YZ0P7^-$2rYwl0Iw}U8 zh#r^)T0=HfV#^NZOTt9QK;4WB(Dpv`vWc9ged3UL||3+S#JkUHcr#d|v zKVF}fYE?Pjhhw2w(dbHA9ZsrMhhc4|yLDk!he&(O628Ma_f4nzWwNwRqTaryQHm;u zN-JdvW`AaF*T@X5Y|7wMT|!9?3Idl@ShfmYDzbd@f~3k|uB%#XaE*d;DZ6Mod_Irf z_lCl1tjI|CNa3t7wenhfW(G<>Wsy4!w6QL7qofip@^vHi&fMj9KCsfqi8)&c<6lxv z$-psAs|WLY7?R|mnZX=UFU4XJ6>7~68-(}*HEVf;Lvy)KK#wJ~H#}p>>Vt7A=aC{W zH4lR*8Ie$5Jk6Wg_7qz2W52P8VQ#C7IMTu-4&=WCC@)=Sx45t^hNo%X2DAcC2y~v-23@U2NwZfmY%gkR3j^nB0a? zFf+)ZY=qTiVihY4tFx#B!FjND`Xin|-~i7auQksGfg4jaQgO0C4UNoMD5J97ivK2e z!BDY1cyj8)3=xiAt0UjC{{r8>Ix6=fMDvGGDyH&GFiXBYcMei5c{m(&&A-Qqp?yRV z)W7uF<~s1yOobmnTUBm;$Z~lsGZvX5Q|w*mE44H1bL@CYmW7b=Kza7x*X=F1c_{BEQim@m+g*W3JcZu zrJnVOI|C^e15|)sVX;%4apCR!0~a_w#`llB1% zPWx3z$^#H}0mAr7c0iJNBT_C?o6`*ga^_LeLO;KogJZc?$5Xv1!X81vN{8O*U4s>F z(;{vvbNdfgeGu>nrzQbrg|x zIgBLZ_;_;u6_%d;m|?oY&q#LI29ffA1X>ZaXx_cwIemnZO^e2(*w%smwtunBwk`OE z)AQ~<%Xx~(x~I+}hg&iXGAP!z_Rj*j_u2-S(PD$CS$RB&W!p9PWV;sH;8$m2?XncR z*)LzoNSy)-v{jS3BZE=#i1-)&;a_ZyhLUA6?yN4(n`X+!b@!#D-+XJ#OL<=WOFZ3g z6#<_cXC>ZJZeu#?iT6JJIDd8%+X8mdgf$tXZg5D!Z?+}|=d*#BF~hvO z=X~xW%)z-X%->)U;#l|Ethr8lq$*It{Cfnq8Fm|PydKsPpdeCJGz zNIE0)*3rx*2uy8aFv8w6|MVHZl>z?(F2NzL0ZFKtYc-bheL6!f4gfc)MZ?6O;t;l? zMEsnbKO-^U3EoSK#+yQngl8>0Q#k2uF{-X>0f%fdM%=ZC6MRc)3-h#khE=bycp(wb zK>bbR-D_#TcujwisUtyHINBsj-TwTy|!WoSmv`PTT;8Wt$ zV*e~757m=FiXPc_I>hn(RotU41v4MQq~9 zGnvd{na-z~D_vgs{;abnkM3PIv*M$X(FSR^z2ZGB@8;ipd(JT2;f63q)7@5xVdtyj z_}ewyhZ7ZLcv?R3XYgpImoStxB^te8tV}+ijm$iw=T*xzZGM`*-+P5VvTkii7E`9# z#CSWQnIXT4-%|P_a}x!q%oS>u1PZi}!A#0&)eqF3-`yQb-#LvO>q$VobsciX@Tl?4 z?)$2q@m)117RPgmm6~tqcdlrR)V$w(|IHzz1nFJ@Cq$EE^gr4=^M9zj|NkS}RLC;f zm8-=%NE%sFh7ge@+Yn(88f*6ClATgavWz85WsSyI2B|U0G7O1qWgCno>zHicGuP+) zUOw0R`uqW(&+VEY-Nw1S=6TL}p7T1-`{Qw(cqG)vmNib!RRA4DNm5VBBtV==jgTIe zZJ_EX_q$+n{??a}e5U~~)*$Z^s)W{B*Je@puOjIThLTKl`}+Z5?2(c$ftQV_!!zr_ zA99N*?2NzmGLoN@X%v%Y&Rh9>#&OB8G#Yo#Ny$Da%0W%7zl zGA9VNql_Br-C7ugVgB=?vmIT&ky*uu$%XZ|Du=!Vxab|qTF=TKl)bW3?vpE$HaQ(u ztpxfkgMYWE8S%-~nZz48IEOfo+o*Kax37!2q9YEm&i(esp*>DCWV60qOfB5p;cGg(%G0i0j(1U=;HSTw zS8lXGg(UDa#j-=5y#1QG+qW{X3*B3R4%YgHh&pzEhm9rs{6xMIrF^dx?(x1bXND9r zeq}Yi9uN`1PkZ-epJmQZj<@%D-*h__z2mI7OEeBjty$o$+@ACO5q>4jD0l0wd-X%< z>piclI6s|By9tA(c6rKpFbmKPfWpV!^#<&IHD4X?yH>LeRkJ#8^BGA@sxj>GJGeUz zD`8c~7goVbHHMw^sMmELT{&Imjn+^74D}6wB3z|>eUJf8@+NY z37!7XJ02O-AZxu5KA95aX1wLmn^(kTU;icmyi z7i1S)s%2s$Tb5aK{T*`TCNA+xWdaS{cj^)UY1Gbt(23x5_&wRby)Taqi7)+T_KlV0 z0?*8BWf>VI{W@Lrz!3K3?j}(KvF*vIl$WA9q|o0)KGgXjZpe-~XPC1`cWsyrDb)Ei z-oT|^uA~_JFxM%K60=m9)4EqZpdh&$4yWc~U-1!Ruz?!{8bGx%ag>yv7jHSG?^<*s zE%{0{RvkTa>pkk79JF?AsWX{X3%d)80kgmx&#F>3%3gQSX9so>YLn2B7Vop6#Z+UP zwaS-6_t!QmT#w4uyKQnX2Fq8sh_xoNvb^Id?qg95`jWaK7q@2}r8yQxfUxA3M(vj+ zEL}O--88mMp0KIS){V+>MU89+-@r``h6R4iXwiN=?#+0gh+mZgnQXQazu@%{_6Q;X z<84oZ+&0BA-7K;GVJ-}6?atp1fr{kM>uLLwG;OjZ@#CTvA3i6RKxmS2QbSM1CH;rL zzO`Wp=H3PuU2X3q^U$;;Sykemj(@h&ktjPwR8to($3cy&m1F`)VCO(grQmd&Uuyk4 zbN#to?!qZcYJd1HCA@1TajRmo6fq<-(0K^6J$bfjE3tJB#Zij2*yk8z6C3}=o1WT? zl(?~JAz1af5a%FD+jJXpP_n9M-MO>EQ@ZssLgvQi$+VHLQdT+73O5(w`t7O!C?M%Y zJ*^yfk;90T);S=;T445|+&rsV)_vt-S!-TbHDN2)yj#r1)Wb^xn)OUF#(B#k>87i7=hG z{+k{**Scc+Lrp#h3GjO6KQsQg{Mtsp4Yn5_%*rP_X0=0d@K?spqVo*#IafiGdp_DEJMX}qAs)5E;=&A&9mcy{SFMd~Nan#G z71yR01UhrKZ@*fvRBMgKEw>6*^=>~&@zvdey|ON2j$8s>a1m_ZCFZKgvZBathnIFrn#yEGdl zSFK$|;RuVcLCijb+;wZEi*<@0#SErQjtKA!30-`XEUWv@pr=%6zke)u3*b6@pZf`g zFsc^LtNAKgzDA4Zrp}g5P3u4?s%8qE=;h%iHiw)zvZl*ye`~4O${Mx?UwWUMX4H;Z zWf$vNkgr?oyEMhz|LLNkX*=7+iOK5jhbn>wryfe9PQL7a#b4rv?_8mZvLwR#2`CNO z-{EnN79r5pWWcNfE`33MdSXi;YDg1}?=3oR?(VkyJ^O9bw>Nrzck>2IL5Ps5*bq<*ZT@=nJ(u;`4 zQJk~qmeb=zE$BP%8-bgri}(~geg+rqF`RtPNZ3}ljY3zQs)9M*M?+xSb4#GDIq6=ameDj_?M7O`&kaKFv@Yml1-UjolxeO`zT-AjmP`; zhm{}r<#Jo&h?jsYC*~{ezKBE+Gn~CsPhu~VsDR>_B0sAcNEo{tW&Jyki*}Bjz~I%m zt)RwvCuloD=S^>e*?of;zm@o7Q}7Iux#Vh58gWB!51Ka<;kzw!#ls{P9Qqu3gx<0H z4z!2To_B^ks|ftIAzWuWQSa*WO}|B{yr2g>Tj4_rca|%vl_e2#w4R(QK4JSS|DAR9 zk;Dvp9mp6Xv8BE(9&BKkNrqBX#;!$e@fWrr(+ACPC*)39H4}1lKO^0O}Dn=wF+}Li0dV7q@WfA*`k=OfK7UQp3TDDzOPt zlkzzhHq|kF#p?#0_GY97bbt^0T7RW%V{}1j!}x(|P$%qlYOu{=mSaJ$vq?Z8CdN*jht-gs!bz{kSr;4?>L`n?uTMr17mRk1$<9!z&?qMq! zflJ9MYI(4q-tMXP)$L9E?_~T!4A)I)!_O8TaW~?@*Ma(d2bCz|$EK;N!AaZ{aGjrX+)?de^tmO6XK4OXw>&c>2xoJ+FGbpe_XX4+l{?!AEg85}wP1({Q{vDy(_WK0Fpjgg zN#{H(Ap5j(oHXwiB>wiZiG^-9d*Aw%b&%J?^=dXNR;BUjetG*V!?bh9Y8Q9`v=ysY&vS;>xdbL<&J2E6|&sMD5lSoR!rOt$>;jL5aLE&92!iWk2a#-lVJ@ zFVff9S@~0>qH;Af_VrwxMPHNRj5080L5#g5vxoh`G|HINn>ri>*uT4_GOWgRS zoIGar<;b^wrRSoUC0r;04OUN{$N)Zg5~;Q6lXWDVO45}-1K-Y0=*I*yDSDzdCPepO z8FtsHq`Ofqn9)mE%2ePPF{ZimayhJe<$4~Y4YlJ~V%y#7R!I*9J5C~UJdb@_+6n;+ubdeDPn_VUA3Q(T)%l6 z0$FjWrXq8NHRi`pIfS@4uHAc8%a%tl1{(o=mse{nUIk9>ehI~CQ4g zDYRlOqD{iUZ4_hP8#;9N>Y^G#JKYhzu6P;EoI%!=%b_bl7@$aDOgEj2n+G4Xve8eR z7Z2jt1y$v)l{n_dD?H^BF#b~Ai9JW@jJ-0dA(JAhCY!j?aD>FFr3tx@iDW)~Lx9O6 zc<(8eb2NOeWRgF8pC$1iS^>bHng@>b5q9r085 zfeM9o$MPfZ?o1qJEVa|wVl8t;{aZ*p*;2Y zudII}r~vWes~O() zWTzE--C5-TFHdV%`*Q;OeAC8H2vfFELdl`BT*&h+?6LVBjqh0Xy4#eq-VAG-<>{U&F^2U>2^-R8?Xjqm?fyeoLOfOa*#O zgJ^Ad%^t(RB1817zlU|>G)<>uV>EL4ikyaV$gIAdRb{(pwP!HU_{RH{U`xj15S%mG z5#+L9y4g=}!Whs^3hzQ=7pqaX#p?J{u@5~nNWgJD{^`mS#dz)pF}Vk9Zhj@yW4Egx z)B+7{mDvQ2*Y?K*!rf%`@YM%fX5~R#82nc-p= zELxg30ppWcJRoo;)x=e5)>|#9F1X9`RR?y}q5799fsUG0Q(v8>`>;ODi$a!gmqzLz z2>py+HpnSIJc(J~6bhfaiFtjib8|$H@on7}qzpPzP=|ONgjsG&k_o@60*XC&OQfbLD zsn;%y?z9Yc69z`!nmB4%{V^LaG;|aU{`S~npWfUrh#beUFhHviI5f89)H-A5=MrzV z3MnXG?x={Kkj=Mn?cW1NJjbpx6`*J48WgDwBovJp#EO-<2abYdE~ax6`&Pf4#=pjZ zYReZinnc2AXsC5nGzW|Zy3l{kMgC??R0tniet}`FJA9XVtLBy6@toNU&rhrEKmWGH zyN)dz9NjxHl{fAF()KA#w!8DJongM8EwbseYm1+iA8$UoG#I}G09@~61kkR!S`|#O zR~<-i3i?gAH{%z>qG4wP6P=OmgLs=Oj=%wj7d~LxK2{BXG|>bGP4uX}+(l6#aTvL3 z0RR{p4((yu_D!tbPaAuRA3NSGbXP`R6W`qyQoPw9RGm=&o^lJF5#XFo+w53v7(-sw z+ebzY+XZZHl_f946390-S*l%XYmzRN_FC8g>fP^tz-Y%a4*IU{gs$Q4vHFaADftsyXRaVIpkyWyo3fMrqjqk;0~-Qq3UA#K5$t zCqB*O*vwOe*o-I z*HRD`kMwQ;wGOImVB~d@GIX%p3872&&#b4cW~}}?GJBn#6dE>@8_friwRw(x=10L> zK&t|q&Qw5HYTM>vE**Y$jqTnEpB266($lR@wZ@)hT*UR;>g~}Z^HSH^ma{JQi{iB? z%*iijPV}Hfa_I@BRr9|F8oL^;YSNm+-J`?>SkMq0pl2XsK*it3ttj(>Ff+=EnC`agy&+_B&Yu_gWCJN=!-KAvaEr6T*cmW#mLg|UhZBnpd zM-5dzBJ}ttHsj-%TIA<$T%=X!`EVCQRZ1yU{82~51_5FxO;*VM-9`2zT;Vk4DLtSI z@HHx(2ZC-X_}%R_Vi{q@qDoX^Eg$hW0vDh7c^%nJ^5%1RqrBa>YuE*^0P)AG=#Uyp z=GopP;0p0uEm0_qUmy!UQQr8=EuH7q$k0;}ar2s*a*_tHI+4gt5y^J_C_-sfCT5VR zA|KYSs?6Lw?kMI|mJ>HTXY#Pp)js zDoKeP8XyId@BF5*x&?AX;FCaevVex+B1I)5*Pfq6$!cn~9!x%uK@*r=!1^*!vMG0R zoo}KWAHRGpY#Q(LHa-61k)G!qiLklv^}j^2xd#fs!RO6rFR;c<$>q-*$>x#SFZCKV zfPoT?5ONu*E~ea3z(n-C&1Rop&U%{N2LQij-^kSJY3qZWxLfvu#Jczz+-{ZPy-fO6 zVT>jDL`wEhTCddOQ5`_tkMvQYN2@JY@R{NKg*#16l;F;zb8u+Ohf^c1^5YdAOTE-| zqg`ODku9*M0NsV9C0=z%iBs;MO6t}LRWkJMsx8wADw{4eFarFh_puL(10Cetx2ROM zw&#`rf2%@Ms~{up>Ow=wRha%)r+;FaI9NRcEZ!JsR~2fiv&^cc|Bf__dD^GTKHzHY zt%XJ$ah>gYOj}cJKPu#XPkAvV(D*!L2E5#zw`CHdEjc`=bsl9?pdil-blK!j7``En zB&{EuuhKk|PV(hX7nHrY`Q5Z{#fm*$k?1&r-5~h8 z9ehbMO|b`S0QK2q*Y$8E-_`J`~Se7BIl>#{7M_Zu}$P+SP$MkC&pZNGE?I}lofZa#b~CV8nPVQZuqk^vz+CY zW8J+Iw)-FC**%8{u!00HgS#sXSMNJFj!37w(16*B`ZCr7+}0Mc=YN1x;~y~HKd3zW zuPkFg6*dl54x2@|XTKjnm#2I<4ss6IXtMbFsDxkp(^GQ}#5Ds+D<6RMEVqH*RXn&t z4TS=tG6E26)x7l(JlSpA%(=OEL38^rIJLv=wwsc#t}<_3d>@-T&iH(|y1vYm@s=Y~x?h-;Asn^Edqd7|cJS{;!y7-UcnUL`f(6A`UAh$NMqK@>y;R3wKIkt8{13M9EjKmo}~QBlb`QwWly zf@COCk)g<`pz51zpR@1Xq0am9zSr)1?`!luW>NKaZSDBQPFP*Sk7wsX|5H#RX3k%aUv^cMMMkcYmkmpioK<}qdktcD&(M8q|e*_NA;Y_+ZH`b4H%_+voA9alHOFt_#mHmqYp97u|nP8gON|dtd3@Pe#hca>2sNs4}bS zwvoM=B#iIunA6G_)$1}|{g^RMVqT^kK6KAyVbjd_?-I`6e7dQ9y7_p*-(G!tnTUC+ z4mq@pVQ(Dk-!9$3n=j_vS0Z{b8Z?k4)_QT$6o#X3C@}ORmB%(y_CMLB{4Qyo#6Eet zz8I!`Hic%jpez2(jTi9SyjQ-y!hIipK|af|tw&1kv^pFvCHy&?`(oSe7Lm*ZHIAO@ z04$>9_NdkO;Q;lB!fQTfP$XsBu~!{qCPHXaHK#|MU*z&z7BTRlEl);oyg4l@z}@AWRBPkPt%Kt0@TB7|z7La5%+RpH#wV}x z<$3OKu;!^+UVYIPrfnh8wEkkZY=*&%*k^^$+)|>yTl}NhOL^Xv(5dxPS{X9mwZEjq z-aLf!m7ZzjlnypZI^o=W&E;Tg-&H#~o?WEGa_Pg zq*--1s+A}enaYH|AH^26Y#{TUJ}#_9?pvV868*Kubhlo!(^z`zKTgj$&NOH7ZtkPS zyWL;oOQ<^TJshm`(KB50;@ppGH$UMyR=dB}VJtK`s!sTNSY*0%Q<~Xx^j=pMP>u}P zJ%2H3`r5e*>FkkQEgDZ>J^dkZ_oQ%B%tfcC8|6QGJ%~6SrizAEh0eLjH{#5n#*G(s zHQY@Vr5)%R=(1{k+iz75qYNUN5eNVdy}sj+F9iB6|f$5aQDU$fyjza!ic?!e}hs`RYa10!U$lAE4?e8w{N z!AR;&y#YR{D^G)@>+0*Cs;JM=2M1Cb3wXMUX3~W*8de@_%Cmc#>67Kh_{C|-Hmk62 zLiUkj%rP$SPg58{5;fbYKn`Wua~FebDm??2w?4W0sz?vz`ZqeQSxb>U@rHW~$()g` zvky3j3axptwASl5U(j}P@|9(BQE|e;%lek-sVB#CZ(L4NrpSbf;=C>1zWHLd;Z0 z*-TXxb`|_g0V4{rgpq=uh`>K4@DBzfP9y%~H)L{YB!B!&QVU%yIaU7v29tv+-;#gi zPP8;i8Exp|L%xdGW;u2`hE&7#7N=%3C-KG8^4*cg>xj66{080^(Q?1%3%W~6FU~3_ zMaG*{d+K9k9{KBr){ESUwU#e=F9iBU2NIn=UGTd25bo6!KdrVNS!HkokDpD68WF{N zp(=NF_Nv?4u`~RmS_h~z_ed#d+2#CTM8tpo;m-Xuujj(tzy0mk|N6rqKUgobKY>gB zPsvErT1vEx|9q=IZcZUrO-}HuwB%q3)>ib2e}4w>LGVRh1bz+sKk|z_FYCwGF`agw z3KOj>Fl}Sf>%WUQGw>`k`{vHdC{^j4d8*xCI)1c{J7R0};n2C@b`57Cl1O zoaKp#EEug53@;O!uIu39(NrEy<^TAqlxEiNfb7-6VEj9sy0y2dmFqeGwW%hzc%S0* zzuIxy8GBL-Zeuk$KG$j9sRF8(_e`ZMhQ_v(EQe^v^^K=z1i!tVFi#jgz^s^+#PUtjguL%(ws@Gzx zE6k-mH!bwLkqCTA6YDf*H_oTK&|F=XZT%S{h%H z%!=1d#cFtY?^v~0DRo1a(K5oQh;Nmh%6}dEyz7l_QDx6XudRh&C0U0%AtmxOB5}2; zz6!&S6Ibh)3*}HXJ_=ZbAM-|ytu>YbVNZQt%-&>}53BGvfYKeQ-4lasZ~XY`YnUT* zn5_12$m8-~sb1B~NUmM=HzO!&M3(F^BVU@QKfThO?dbEIRhNbhT3w6KL8NW7CT*%U>SR(znq(FU%Y<2W5;RC8LG1q~NKtbPGiWtlZFy ztWxgw!vg$kUUeWPtZ)?H_F*A=GA9m_!pT7@M*b6PvzgrL{xLBzv=Ilddi3q8>0|f} z6S!{8Xf~zG{GJjPJXKyZYEHT|yl%29ZPA_f9=BU){Nw%YLA`0CvaUDfND`b5;(+A> zE{8V54do-+o+^uvpgI_R4P}JPdb!Uy`(fD+uM18L7Nl5r8_xd26u~`}DJbNkEYdF$y65N9w0>G&&TFM&5# zE_!f^&^;f4G&%FpD?$n6>p(x4&~GAFpA)+0RqzULUtT9P(2=yXewTkJ-u}m44<6?} zC;QRl{bM|jChutF{n>{ct-K?*`4?w>2+TI*K-rqRl@W#8Im7 z=XmOm9PG}`H1pG%MLd()rDMlMN9+~iL~Qipgsrp&9NYNnw}$3OaREx>fQXQA`sLP#T8PyQo&>3I%xV%Jyj-Cs_P#K z2$Wx5xa4%)Tk1x^30ZZiweR*jqi!M0c2)UtY>0!k+gF$r8nxj*TR!vHXl{+V2*klu zH-I$_44h^Q#{P##GTASd=e$yYEI@d~ zd!u8bVljtm*tXKfeS6Tn9vurGn-H%dw7rk36St72m7;vTPF?cdE=;B7N_KuY{NT;n zTyw7PR_25s$w`V(2EOAC)n;mTHG5`f1VV4TEu?77`UN$=UPi~8?lugxvafYAo z7zDLz``!miK^zfMH+XdmE{%XWXEEY9R<>r*SG_YPndG_f#kjCTgeRtHbt76sjhhwa z)Fo{^SYXPMGE4R6#r21)!CiTM54PW{p-xZlv!Idsb;;($sj1D$PysFeR8c#l7rCc$ zi}ygq396K5I99(UkL5SiGq7`ZQHtT$$x9QXmX+CYO2v+}3j7cevHS_>LIP^nv%)gk zn_deAXRdATZ1>1um*~`F4>u<%ex6N9AY{`zn(XmbevLhCQ`E2Z^z^i{*YS#DzS!j_ z-e~mNTubWVlKDh}RnENqB~wuFSCDeS1=6YMV3?^JG=5F}NUaZ{p{Wn1);Gnwj=J<; z19;3uXCL%i?U&3KRg)!zziW)kZs$i7v+NDxesjQ2zDd7KXe1;U?_7q3WmISfh30R% zKQgT{zMmws{wCtg#(FLoL{X{T@qpX*p6%D00+&mMbIQ~#r1ozFzwgOVr*G2j~n ze6N3J@4ZC`vniIlL1f|LfjD2i-pW(YhFcBE>kt_Z6!4y)vdNTLZ|1nYTfR4w7y^ob zAz}g<3N+F}N#5%%6aM6^SJdDrtK90Bx3AMC3!1By>%~cXxvq(&6d0uh!}(t+d7nIY z;}XE6kZ1J_VHGWx6VEJ0FV?IzGB@-Cz>orUxZ+k1%t=4#7#m5Kd$dIrm3P&mPgTAK z9(UNLnsXz<|5?@LXXZWh+6E6s?tdvnH)_*g5m2J_$_H*ItK#`7;@^$~a8I;EDT398 zYI4V$&cDV7%OEO!=}m?l7N5kQi%Q7|{Ho&buFNB=pb~a40}#LOUEXW$vKlGGGDx&7+wd$3Iu{t%^bK!;d8=#f3tc)@nJm3vH8TJ1W!HJfi^ zzN+Y`(0S)>`G)y5ATcb+=gd zO2{Z+bcDJ*dCip3*Vp$%#<(tUlA?Q8Z|#`+8sq0CHiXo{YKSZ^aepdqGsAdkAitqP z6TxRxRYq|yGo~TmozgEwItsz;tcCLoYqB#~>I?0Ts*Lm7!6q;_T68FiXPrXKTHyUf zLlS=J@Qr)jELO2i_cd?No=WZ?#>uKm!rLNy$-LF?RM&^~&wAaQ((2F=oS)_i4p`ey zSyO11#c#-lK>uMLZ?CrrFv6SAJZ#nH7*DWDmFdWsG`@PmiXQ_0`zBU&-V0OB$m+BC z<6<$&Btm+qFO(+uB#WLmi^ic?!?l7!?i#hE$u9>ESM99N)c3g4eNZ?l{^4u{qJfz` zj9E0NOz;4V-WKXwmh+QaB5jh@P3hd)q76MiOxy<{?>yqr zmKaUX6P20?R_js;NJV;9;~>x;X6?mWP>!h1TQ1jKJ_A2YN0*EJFUsl<~?}^0;>t|k=@4q!CZdCd5*8Bkd<&E1fV9BHSg8f~|n;stD<4E4d%Jar1 z<{G6*b=z-QX$q+F!@}&++`m7SdM{{X!g=f+hvKWxIXJwMx;Q$T+ViT@p8w|);+d|W zPAIim-F{0nw~)Y`Ysplv{_fV>&xByh3zz8q8fn*xdeo?TKB@AoM6*ULy%N3nHDMB8 z*Rbf_m@c;i!hyUt{>n$$ebM=Rr6UFI$?gj8cV%nWuDsdS7zqJ8Ri&6FVm8^0pP?9` zR;6Z+?OAD?jS)3@spRn=e0Li5tAe4^B_pM&VHD2wl&|k<0NaVRm6_zARMVhgJEYIr zwXyl?XBCIr!}ajPU+|!fE?ML=hk6s>v#G$YZsiX4>CnZXoP+PEgBj6=ju(>>XqMW^ zVnq`QCiQf$nRs(8-@7lAq8ig>O|I>~qw%qLi#|qZAECGq4-*Q0tMTa`cMj6!$8AP> zCAXX}-_}+z4i&il#rhs~*-_&ycfCE+SVOH5c^{XIcTF07Q`?F>qD z*ko%c1lrJROpy*)hnM}Q`7+$2=kl9a^}RjDJZ4?WZ0}25+~ktoQ+CLH0lZ{oee!bK zY$73Q)9YsL)wPogYcIOQ8bUkRe0L|3w?)Rp=Dud;T#dohU{@vt@aqEgAmq|Zl0eiF zkq5H4ja;uZ1WqAOa_;;p`ykwm7al3wQyoOO8sQ& zUc33r&`A_1Gu$pK2R97{(Oq7>6K+xfcX0%PKfEm_Y1SS`+y9&K(sWByJqCftK7n_E z5bI>u8W|z<9&!54BvTsL*D&^vOr>rX6k4Js9U3`AW%qwX1h)wwrM_$Ym`W9EklbhW zn0|ACl~Zr5rLeHy`l(dPSJsFt)w`3Sp_M)OgIQUD6o#fLSKPK8zNGA!1-Ad?!~$om z!Refu{RR7t4$%kj(YN_c@r!M92OP<5fh~22JzUXT$2wg+*LZK>?XpI9M!(UfI-nh>v zTu=x;^AU=4%37YBbjftkgz7>icquy@8@|q6T^Bx%FI3-Azy2T!hP3H^G^*T}IR2eP zYjUj)cW^29bp_@}gu4`^VVhzk5U8%B&;zj*|2ajE1KQEQd ze1&s5kj{NI%^to}#dGlD6i453i`80IinLd-d-|v1cqk$s8T7SDF)<_%!jw}9&0eb; zq5q{$AfBjIC%&5#{?kPZo!YHB=1&VZcq+8qV=dpZaLW0~ z#Sn+XItrFw5@5%@4gs~62${^te}?AZW5nIO!#NfNp4tNxpf=_TuM*%fJ_V0_^kx4& znMcF;-(&H+ksTSxpVlkLKaULL$Utb>j~wyepqQgA=CAwik%1f;2r0$U=6SSv5)mKy z#{bXy#^PgX8?#+BAg8yD=_ZtM$))-Fr!YH4WoKtk)KLkXh>*p($4R(6b3febuRmv= zbjo)#oh@j-CnIDkLRKcpcYl831xGl=Xk~vwgKcv`Wv>+tlhBpTrE+=HF~ipMH_6L= z+4}i<-dzA6{_rM4Cj^iY$1uNamH=Kl{QO%0d8za^yMX_?xk6Tj9jfM?cCL{J(dQD? zw8Nc1C@prNq4>Z*z7x1`vJ{`hEb9fxo_U_P(_5&bkvzNSV|pH!1mn0|QVA&0}LGh!O6cpZ#@Ux@>BV4JY8c7J6~3 zX5nk*P>k38h+0q(JES#IS#W=~S7Yr4LV;dzhc zb&4z=Y`s*BVq6u!vBx0#=&{sfAt;SCRDj2?di3FogFo&ND_XOD*GlBDYJ*$jQy}7? z3BfC}5hUP!;a;K$pVZ!T)CCz^Sr!N~FHi^Np9Xs=;?2F;R6FF$CITft3R)cj|4-y; z;JqE(G1WVDE0q}5%lG1FaZ6peECArjc)OQjS1Rjg677u62f1(k(srxJAyhmBchZOM zq%M2toKLfMrCX7IhN+)B;$)cU-5Z2x5prp|#H!SCQ)C9I9y9SzP%>-3sS8y_gq(N0 zlfS}~TlI6*DeKPPV*lSuT>iq8Lc*{xQU4c=9^pMh2Bek6#l`NOdB*iG%aMQe|Nn+9 zx=;9jI+o@TA_L$q2JF@%9A7bU7}`%1)?-__-1mR=J<_mIfWe2_gfolsR{<2vYRLDj ztgm<3Vov4Dt-hI}J>i->dP3jXY?L-nGzZm6X)!A@c4Jj}O{`vlJUL|-+Y^MX=;xr? zZIrrzGQD5S}G%Xl(iT_$EL>mwL3)O(2J4zc|;2&$@c6?=~%y z+xq@uE{(o*{_O$qN_D@q;VfENI;Zw`K#h@-Db<9KP}NVakW}Q(5~geHWDxPx|X@D<}1&oJqo5y5*Y zQsVcL#PZ|Rp-P=BfJzNr2RWC3AGmPrW4cmAj%NiSq??o?tF-nQmE2T{%VHnjd6(V? z4XImW8UlY*$^R1H`4^uVV9%({Ma$?U{}Y=6zhS>1tgDR<-t+ngSd#D~X~6U@rb=cZC+g0jy0RO(I5KzR*Sh=%Sq~ zAXb$n-h3t4Nuk8%KA!9G`VT%jIO5F5Jwi%Cn13+YSU*f?#S}AEUH^@o&0uL20MFg4;red~j^O-MbLhilJFu!rxbX%EA-o30xebn=3pq`Nd+2OP{VW@^D*!I72s;;MXP}2UfG} ztdh(-03NcwABo$#2B3MhzH9dgtrUM3I`9<|z6ZN`_7io&E2>o!4^&iC=1@pHQ-3ir zA*7tN?>6K~V)Sjx`LPq?1igbrMJ?8sarcwU2~tKb>ERgFB&BTI+dSjLcV> zNSe?R^$*j2oE-7{ih~#u8a!5(mX-^P9t2&(I)lzE%(+KZlzJ_K@bYEOtW|V5egM=T zB3fM7|Dbi(ndOjU{;~zg9VZ3NJAbFEw8aY8dEGrB0XPs$F?{+AGhL}{W*rIifT0mS zdF&1t4A)^#)<38ffARE>eSrIf?Kg8o1ll36!%&r8C(~yb5DWUB`S1`b9?3m+Ay%c4 zgZd1dls#CTZ0`DHdb zb)Y&2{7D&zQC{|pnYYKCvMrkkzGgF21h_zwfncWiHy3_cB~z{4A~gFHS-jnwuuV54 z)-XRTfJR1a1X!`na3v^Lh2}ZM8oE+?Ef;HF_wCa)4+6F2OH%uD=@Uw_`wtw3yoc$e z{^FAVFkUe0&{EXMP~&r*-|SJxM=R_m3`#8ij>ayz98df2T`ymeh`MFvBa9eP^%Nz*h_qL3uywY-wG0so50|4n9#5h zpsh0Aocm$JEH(8?@MY7Q+8V^eQ3yH77gJhN!Z3ARO87rUax`*N;XZgQiUzUchG3jz z8FK?={t_Q)KuW9ol98h4UG2TMe$A>ctHcz3xS(ARxIq2e#pDDBTnFwSUiu7<(#GOv zn-ZBo_+UEmoQj_UiYrttJ>fV!d6TmN0LN5MAMl~ChRDk-at$r5?L1PyJ z3N_L+bhr)JZ7-ypMy@+g{>Bx&+eC<~1M{cm?%vcGhl3Pmaz>HaF{4`K4-5axU@}3Q z29up%5eOSXKp9-NYJVX!Y$?FyFTUcB%^*)68uP~LB*5?!n@w`6a~-x}JSnp~ZV&Ri zklUdQHm`}Rt`Php325usf1B&gxm1a%Y1p1j9s>dU*yLp;FhSIC>`;Fl;E41M)|}-c zcM*->^3#DV!&EC4&VP7 zTPHGXO?O!>X#i)*O7Lcnt4W_x%C$)^fk0Ud>}vI4qGM0^!nAE=x_ae`I z6&RC3C#ZyT96%NGnPr78Rgu9<=K+yt;zN|$aSo+$1C*x};fTTp8V5r_5_AV%tpE`e~NXE|coDQf?32W-$C4irm3f&_#^yfme}VPT zl3+kA#{zwGTk;r0RqNh}GYO|mw5_ldw_Q><1Cl)qcrIqw z17fZ|Dpm-Cux#RX`>%lgz z)hp;Y-E0p6y&yn~wl&VU%s?Q&vbe=QxM|(+lK%IU4&+kIs&~Xd24WAu7zUqnV)l=9 zpq_i{EnM}~q9e2rpEM9sYh-RN#ha&4f=F1+!p4Srw8DidfSl%}K=tOsI4KWD2xqMW z%uWW7Bo?-AoFMSc?6fx{Gin74%B~r>PXtW>Zuppm=lOsENPGe{3j95B07?h*-Cw!B z^lFmJMYKDjtY0KRN#Z0{(rsmAHO$UCokBJONNnsuPe3S%6gO}ibuk{cDW&d`!CIFc zthY%@H8B#}t`C&i%VC?paivfIUb#0&X(d7bLgtz(QIxmft8;>vlYF)Z5f8K7ouNR? z{n3I$6AR-u3W1-r=rpSK3`!4|xOyHiE{$6vIiXZ$ezhGEw@@hUfKc3i;Y&s^z%8?M zSnInq)Wko!dv{6iKs_;B+*1gKZM*5U!Ri!N(KX=Xp&XZ|-b7y)f>JrAvHdEKjXDi= zX-xww!QjuBstq-TE} zWbhq;Dp0ST*^Tg7GOS+*#+3DM{nD3IMP29HWh1~q1O79vul&4rGroL=B3|VF* zzg!hE5)@*M-v^bsKpO9Hl7>?`P;}kzo`45s0&S^`!eyw=Ce~U61Qe2tFO<-Y9L}nw zj;BB=YsDGMv6=qhfJQ*Wmsr{hH?RG5H#HhpJ-x$vg~t{_`DwQXbVPY?(3B+i5~^pp z75__WVWMVpeozKfgogVVgRm*9xGlUoG8>7&b{FwAU9+?Kq{Qm+fkGBo+{QHkEYi-R zogq8~DlSN^){->LFG3hj{*`0zfyr}gQ-KA}&kAv*xi^qj(Ei8{1>k+IWc7rhp{@Vjc{;BW^8ACay>;Bm{M!xNxNwi@z_ zmD>}$Tp9xM^pEvU-aq2xmKug?W|_Q9txgSykyWAkM`A&xG1r6B>XJZrsU38BuByUlexF zHHnNm_tl$AZ{2_9=lag_M5;g@kQ51JJ8Z-)b|G*ZdmM+i(;A4k z=>vE~u|GTw9t#b8rc!X?f1vL(6BJw@zGt{P=XefC8SBee;v7@b^k4DYQIB4&G#MY? z@8rO2*yARCo%tAXgD2EtyqK5bc!RYf-l)ew_=7XtQCNh~6go^@r&}57(m}1$+dU z=4c|4u6BvqSA+zyhXRGou}zx&QH*ctH0mZ%HzbIu+Ahw`F3jGFFVGArR%E(%pPjL6 zK771n*w#e!esgWf@d51zcQ`hFyd%n27?!~9;4^8r+8bP=TkG;P(aLSJfRomUByEtb*OpcZ zezP>=49xJ!AsawsoVdQK81&W-TEU8riIb~73P>-`{mcZ*&b~w5Q8?;4Ec~sD)R>b{ zD%r;{XHC^zlyy%wwOnKGb%@l{+i=ootvF?mdM{R+TsN4N%Ox6ZBM;M!=jo7Q?c9i@ zI&0MD?9c_Ny(|HfR{g2}a9bV3vi#^d$1bn2LT>A^O_?ib>UnZDZ+r2XIFn;xtR4ek zkn{mA7aQ4>_7iS_kO1O^#G1!9RBbvFYZU27RZ$NZ4eaIdyqwv}8*^U7=|B~-s5eDT zAa#{Xi&i6-+t}Xu0DM-tH$XB|OQomt*TH6*12G7k1OyXAzaj8%l=^y_W*#W92wQB9 z-p^Yk$0bKk8?!g{mc|C-4oz2pj~AmruUrS@?WeXMaW%Sw7G6Btm*S zZqdowmKaVTB&M|>mB3PX-^BwNU*389S|T(k++6{#_30pxVYG!yuINC;Hb($>|01;Cz)U*p$x;JsZmdTYZM*7mtY`#u%X7E0UT#6=5OKfS=})9V8Xq0d?B~ zlrOd;an>Qi%K#`mWO_)=AsJ-sy(k%Z3^ufs;M6O6RJg_r`YiB9vCmwFz=1} z!jyU%*{XSxA~$KuoSF%0yDL!Hq76dRfhN-X!?|Rf3f+C5v5ge%buD>g z00TqA@mp~6*edh6bhg8}NQB3^2dp0Ie%JZ<===;iqtVs74Fa~$b7Bn~mCJ!hs10CE zaL9F&X-C24ol-WE96><&7O0l8JeH&d?&={9)pm^X(qaiUgYqQPV}UL6&0RrlXzha4 zU=ytzE7Sq1=&hhdm{i{lNW$wF;Wc8C<#CTd)h%t2IN_A557m8N0t<+bffi=tfWFE^ zAa~B8qVPNV+&>1*|7cu}?B(x?*wH#V@-KheRge6{(Z2FGlOQ5K@)JjX;%`QA4?a2n0J43vsnDG@f%MSJJH=wheu<-RJ={URSEPT~% ze=l`P=afI-t3A0LQ#r(#5E}2vnEK;cZb!>Ts!f{Fz!>0(aW-lHCZ|ohgsphkQ{QGO zd3LD~AcWD9V{73Z%@C}C2JCTGsdw+P83&$(@+D*l7%G+2d<|i^M&13aTW~g1+%8&? z5o&Ozlv-wYm#ACjbUQymx`8c{X7l1feR`nPk^2l0ai+c;RrfDL zgd@RzGPFcQ-510Z2~j@tD#%FXwA~I{r2mPO5)mtaMISPLmJsc}b^$=FhND|tJAZk+ zfAjE8oT7!XJU0PP_Rp)}Sz*pD{i!2_NRHQ_K#C&#!9PC+bVRn`J&s=TXeN)$^=M80 z-*P;UI~F=?2>6{WSIDV8EoPL*ky9kOPyR*{tcG~akk%twsz|_tk$wVfUI|W%OhUBd z$NR*@M;|;Iod3ryC(rEeVm=dOj&o_X7edbe{PwW4vY9Kz{YfR&XXig{m_=$J80gdd zLQH7GzYq5N%s_QQR;|ay4jZbts!8z3$*+Dei?^%F1hf%yiy%tS*Zz2%klsd)o)(sU zT80pL-y#{@a`EdU|9_xF;9Wk0MWk8BMJRsArUSKI!?#yy30>5b1IH)rULqt1Z~?c> z&U{ElNa2unoWf6wGWAb`_+OPUFq*I;7tOD7gf2b;5y{nwC_;EqA0>rfNzPsR7lbZe z&HLoL_K(4gD}mNpkThIp!ug>qd>ky|8AgCwxx%SAn{v7lkD<1bC^w-E0` zYMhAX3KoMz3_cE^ZtT(Z{~}N^_kJC>gG3&HR^3-1mBt`I09t`8OMAs7*Nd;LM0rNn z-dOR!-tWJEn0qakNt_1yZo7CuTtVO6dNvWwGSDYD8sg=3AfbN7XtV&rW6-{yx?gwe z@--}Ix1FzxH%qk9g7iV_fQnfRHMT~BA6z`T16Yf+#xBR3X9t}nG$HB4*$X6_2s{Qq zN-Dbpx{$9=&>+f^92(D|eK20|K|rc(Gnd5^NkAfuUahAQ0JPD)0!=K$O}gwJzjZ0E{JzBehp1K{?KesR z8pBwquW02<6}LeoIT zOlTUWh_fw;JV9%9Ax{$*XCra@ zXwY83%%iU`MYAtUm#HU+(P*FuHv-J84Pp>!U*9PQED)jWhjh->pf7wP<3-gQT_eOk zgm%odQ#yK2?Sg3qDwhf_i@KG!86KPYdNNnw&R04XK)6%Ir=7$1X2=vneehMSI;*^| z$p1j#cMx{0UvhiY*UNRr3fi+|v+qYCt4{ewdK^P9zvRie!j)uSm-e6|FW{ua=MOjOGM&}I4(J$v7Wwf#3LF3duQdv6K zJ=u_I|Jo+0nd@l4i{<;h&45%*3d09w$`>;>8^VSzzcf4gAu_N>V9m)cb3N~|Wm`8M zmt-n5U(fceU8F}r5-z&xul>gTK#3&6;Yl;+UDqVM)N?=MdfIhAeBU zYzn_Iz_j5cYW@&(v5o%VQ=)A`CVr=CR=Q(Hc0XMMC&kNoGT)sqA5_Im%3zsD7;cpT-elfW<^hDiKt}&&^-+R_p6LpSNWY+)A zNBjm!6B9AR?Hj3eG_csFBZDfVG+iP>aN2CEE@s8Id|G?oE<0D4?-UVonhN zqCwS-9WV?--ecgjfR5QT{4*Q?YSVw4Jy$d`Jz-<#H4Ir1sZnm#dMjBIbAE}O-nv<$ z@_2Qr@am8T(@!)1C6$G+(2=~)q5?w(W~R)%uNe-Cb1kqv-xLkcCfKCObi6U~^odNT zGSzO}BNoSG&N|Jbs!JpG_B8f0JBR@{-Kc!g5HoaUjS;zfyXTi?Vq2y)71gwaFh24p zTDOG!OCs?g*HhHEL_y*fTxD6J;O@QcLG1K)nTo}2m{3q>`pmqnAo*MQFDG-qH6IwF zHgO64Rc771PW8UPBMI5P?h4)qVrU;*_nL#B`?uwVnh?jSs`rKRHJxnsCU*EV%HQlg^*Y{IO?ZspB zEHwrwt80aTM#)zyi->9$v?vcI5Z=rc$blsawGP&ZfDXH8O#y02tz8`5^3Y|%2C z?`YlvA%59;r}pasiV;%QK!v~u{GCcU;7=ytZeq=)Af_em-3?V%UG;>gDLC|g;y)t? zxqdP|I+$u^7mMq_J8#g)gxfsXrLW2p?3XD0oU+N6>x)2RYYI^!nPW?lT*=^=0W|1~ zvp=%xt&B=(VsSGl2kv;*$V|xYIUdIm(TfCJSw1Bem)^7=PW36m zomsNnKEG{$Ql6PlM!6B#Pz@O^IyhG6@9hH5%mZ~p@%WW#qzN4gGUKog5%2d>nmQpL zSTOHgrnOJPwp;56dS^!qc8aA#`Uq1<|E zX82MASj#b~*90!MPVF!nxf_dbb}O`Tu&%xMq;XKBqiXM(TfKc1u+&jigJ6prBR-J- z+s+E&o3tt7#lv;#r`eu{%l$Rm#g}0T3`xQtP3PbT4e)4k={b3q?y4?Gca8>}aRESq z#0!f`*?9vY3mg3BU7^Duex+7syb%xz$3p5BRd|~2%rR!``zgEMxndypB~-Ps$~KGi z=+kR{O=RhxQ2Og`Iu+E!M-`Fn5SrSn>R*N4;dd)n(b%mT=QT9AGkOLplBk5AQx@MY zTFM*hxSO2TTmC~2{@5KzX@m~F)bq|37Rj+U1@B+pP15(I@}|1#^8DflJA9Jhbpc6bMoq<4xaN z_Gjs8xPs>G`7_B+Q}VSQKOtatd}k~=R9@@ph`uD0a@3v%DNZbfg)4zilA37)e9?7L zv6E2Jq4VAkHg}q+gOIAZb_t{iowlRR=Ln@8DrW!~dNFN~fUls9GXzP(U^cTjp;HDQ z{|2%W6;dHdLU%3X0Wd?Q3x_$O)Pwf{c$44!%m{S_cz`WFUn&1JgoZwCPPjxR5 zx@&t57=op~up|P`l|AnkcoR$FK2>DimAt=-r zbtH7g?$Kn*{qIa>ZNgwjLXxV&U2mKY4QU{~6Pw&>t9@INR`GM&^6hA?HZ>_iL#)@=eKycOy z&PEu%cM!-W^$yzG(mO1^_EA;=+B+}UnY1)=dekJdmkQeWvw6~q`S|UDs3!)B$T|XP zfLO3inJc+y_ueOqkF_A#(;nOJD-|)7+#WD#!yI&CiVBjB7njw7{!kBcK*r&?Q;DjE zgm5eim)UvB!HGax&V~#!!^EZFOs0_%d*I%>T+Pt74WtEZ&G{F&vE*MWiMJ_7v$43y zexI9%OKcd7Erpo*lA?6P!&Xmf%hYQxwY)MMI?GlT`Z!h>JI4|TEqfhfuvqAimADgH z4}Adpn5!r(H6wIUO9!m%Ab-A;fA0S$D# z2IoXQ8{4e>p~(DJ2?!UKuO|I`#k&e}=g;0#%qWXbC=lqh0uhARdevp?*jli0Yvh#A zBz(Fb;n|zs3b^<~nsOh{DUUB?=JNlZbb$z;_R=`fVFh zLI9paY3}R0MW1UsL{SDZhx6*9JvQK|Av8D&WbXY&Tv{?QNG{x3!Pyc&&#VA-(&IrO zVjb4K|55MJI21*dgLtvEk=f2*d(;heJ3~}nl8hgONsd6ZDjHO|Q;ji%P>kZjG(nxK zMBV4I&gc??a~^w;N)aQa!eeg!GZ^rzJpp<0#~+(d6Y{xj9AJF^w?0{Lf|w0E(9{Zg zlIe|Y<+$6K{m6@Z(C0&5ZmU6zTO7V$R&T^gF+Juj2EZfD~xKJZdY~NmQPJ>>Oo7Y zkc&HjggV%+Pv@e)?p(;UP^2C*=M{-qOQ$;M!tco@Rv-afpqOeI^vNLH=2@hTN6<@? z{I)Bvol*`eCxV%0VitC?36Hy*f*KWReE;j&#U9(;#EO^{mN2dEF7#rj%d>Y?>?IeAA^no8>iq*a+l z8vvoFNmmbY^}HVdd=8Q52=KR9rQ&Ujau#EK8HoQ9E1+b7A<_BU8l$1}0}Yzg{oafj z)xz^zQg;5hvsYG=G2Z4&5(eR(Y;o~5{sG(Pe4=)pD2a<%5o@7vUSsYyL933ohufS{ z)@^N3UMjlE{z)9u@bF<_ahXTIZTsdttseFrsvNyCxOAM?xdwT`N29lVwD^XBGRt!p*0{dyBU$fPxJ zCfpSu&~z%FV!?>5J?WHK%mP46Y_t+Mjcg+(|6fn8BjS(#ykpw-icFPvwX8`x=hAo? z;MCl!dWBB-AyRA*IjR#rr69Ucj*M>8#IzMB;STl^Vg5m63=$}~`$?0Ei{t0*x1Z?+ zKHXlp6)wTM3Q3u!Q;Sx}Qm`YlIXahnH(vhW_xJ{;PNg%646JWP#2O=qdgV{Lp-)hbP-mBIUBacI3FaU4$R8ySyt{t z=d%_3($dcsR%hia1HF&hl2@EF3cw8I2+KtDWY}c`5$TF4pdjg6c{lp(wZUzJp>uN3 zAjoag>)E7A|RkMiNs6%o4;2uK6%H0|CF zmCl}&TnBV4xK9YEIfc4$-9<$NVy$-t8oRXkg| zj(I}w?IfUWomvM?lshxGSqy=WoO2A&kX)1v4~B9N zhYUp4#il;S8tFmFubIv#b;A+hn{3x*vQh-=!3kTvy-o`fe4Y?4xGsxp!s}QiHW&R4 zGgNf!PRlNKxJIJBLs}*Kl=lAOXbEMO=?Brhdr&S`0NNtuG+g^UX60jAb0Crnwy#gP zLIeb9CL#va`Jxp^&3RoACEfd#Vp7P^1J+}Qz8jUDc8icQcVli1=-GP@Y9Owe_*ZBD zNR-=lZZ&fG-s_l;F0xVHP;4`p zrOd*JPF!AT_y+cHsJ})F0ySp7gf6vt^*r>Ai0ZWhB5c%V3VE-w3tRM59q1a>FZFTN zk6bEk1URkiLeYBuvhnAUwjwJ)*cOci?=6Tpz~q)Xgq!S1&nSm3p)`=lHD=`XRX163 zp_$l*PWpvO#lhTOOLCt+iIwb~vHA6ZgPoe4YBR5nHJ)Ls&g(yY9xWhKko+Y{4plJ^ z1*$!AJ-!ZO%9^^DLJN_&7IojBNi^s({kGxC6y=%-J*2K{I8}?%HXclXO-nwFb*f!J1seK}inYQ9h=AZPl9UfCTl-?AuGdz%fx%^}nd$`An-v8j1 z@}RWbp=4?djg={{{fxvI&-w-Qr5qYA2MhGOR?qUqkBN`77q10V`i0M$E^t#!r|m(? z!X(F5?v1|f&q~r?572NNx{A&pGAK@g6P`b#QXb)e&+{JJ+?xWpH6MJpjfT&HD7c_qu&?B05$dZK+h|=n18#I}K zyL?MJk9fICtMZoYVUO(FS*clZ)zt%V7?~Bn(89ik?739B^s&wE5SgMcg-PSH?>`Kg zC-8FMBQemQ^HKeB`g916yE1sVVr^H={cW8K^!Vj;JMHw%NMk*Id7KS5!In_ao94!X ze`PL}J|9wqhv_xBO>BTLkVnAtM`(haC!d`ZjrjEI88}N!m;6@B@)Vz)hl=>Z=k!+4 z(`&%Ht3*rVxpl6415W}KMuInWY6T>{sarWcJ9vTDGOv4rZr|HT%;H8yAomiHmc*A` zbYw6dU0yNi5i*`RC!OjN7`f4n`o5Uzd1lmZYzbw?2wMtuyFgEJdoO z`wzA`UCOtdl5EO5dp>sQ%r+|e=0ep3m8xg0s_#H2?wY~Wj2tK1`x@aqkY==JOPNJv z9^(+{nZ4LPn>M8|N{&8%MLw;H_r~m9VHVJBgEKp2W4$qY89=2TEWbvC4l0q@N)P#; z{?CUa+~|S8!JrN$}-!$+1AqRP<=T&cFcRmYt*+%I`}e$J!r51!6_zV+bPWZP-o~w zr^HU(ejCj^UIaCgtlPc6b+^{8)|2DHadm(1SpjpMdt6SAk#E-9~{Hydv2@ zeX*s8%HKu1dX+PQ*SX9nOE~$qNFCl)Wlyh?a)Bm;y)*Cm{O3vIPv@z{J6%lhybH?| zReh2y=cU(r2^OiPZ^>EoTDzqFUh4RkJUL6R!JUlT6B)9H^O5`R6IAd4(&<8J^pkzT z)V+Jkc^~?G_Gg%4PPZePB*%UfUAbeJq3O7?FmqFyQ5K+IyORk&d?pUyKjzG$Ti8Qza;C?I^L&KC{qNJjCpz|A72t=CEj3B*`(FO~JSQh@ z3>|iJK0!+x8YN9frwiHgj{XVD#m5q23%bs73Vb>TXXhg-RBy+*r}}JL;?O$l;Pldb zN(uBuA)B2kYup1-r4*VXV{6h^!CF~d~bDh-MKZPu-|5sh- z9oAH~^)Edc^^R0;hG0i|~WgrJTf zga8sqq)1dqLX${}0YbvJk25lJpU02C@&riEK4*Iw)Wt(Dl^HfBxSVBbKMmaF+p z_ek7^RmnJTPj|df8vYS2AJo7flP4^|(@9O8)pg_LJ|kd%?tUfvwTiy?$#Tzj$@t7>`j>ZNod<*L7pb@;jGxUj4&H}c8k5>T6EB1@0M=iuW=Na znBo5#bPB|@cI+Y|O)6CV(cZ?7vPzLIH=NnmR@3&hJ!7oUYqw2ipO`I&@8|0Fa?OYo zOQGzHp5rn?dh}c$uM=mqFCwc{@m0fw-ow5kacdS|*5@J8QcEX@-9j+RUv-8NLL^W8 zG5LuE!Y)DHf2c?tTFgwjT?~?IhydI6U*dAc_F34g#I;$Rmz31iwbeLWe#ZaH0+fIu zS+c>=w$C{s*E_fQk?VCH_4U$Ikf)&^I-Fz~0~GbaqPXy7Vc&zkyDp;YTyJAi;o0lz zRVj_GoI@h$gn5Jg7uM(NUU7Z+Y~y@b0s6M*=W$O^Trx;~IqcYz6l(TwU)@ElujYL4 zy^}U{*rfligDAxUs*cZC_P2Rt^kR8ZA)=ez6eF9^&8nFbI~f7oFDwmKH&>=3Rc)c$ z&JCJ?>!Qg$*e5pa<*WHmBvR|b5-z^aMHF0MSd<_8=e{5TV&L*%Pey~#_Ry|rJK>}qdLmfOBll}pwT8~FogzdV z`rROZGSYNO`bLGue2h;jmt&j4&Yn9D)lt9{`5Lw{vQLC(k@KDw7TtPy9+p7!$@cQQ zQv}?odx-r;gF&)kvWrhT4KPUOgN)8$GZ;6t0qp6P15i>>@p#u-+X)DMLN30O= zD^`f?HxKU@T6|rPNJe=N&jUoJiWD#W;d3&@5k;W-K3Ea+{`}CRY!@ zT}KTbYj-aRPf(Ont|Nwg3O+X_@~}7JEMlk$<=XGv!E`*(1eZ?p;^$9FhdkQJip=vzUXY!7!RK9qOZE_gTn49V7hkMc2T$asI8j86x^JO`+ zvue4Kq1OirKD#T;PWp)5|iMzG7*U|3neAJ$95 zfhoh*pF2aQ99ZdT;;d$N?6km6JCO?cajvQykN8QtO#^Lg#hlt?L3-ZjoOrI%*m0R> zkGjM{JZq4k1!m8tSTtap$L|8uHO?5=FvGlxt=K>cQB1-ymesfAL?&qpu;G&LV8@23 z&bMvp*D7}JGFR8F8H zHv9X9`QwsS3+8#(;Min|JcIG{1m+mLcfJ`ak+gfH?-<_@FGSuG;OxhryX9^% zzg=lei^v#k$+2mcE3tdTsW?dMUQp&&+`y(zTp*GxDU2qHoVJJRLe!MDQx~&-Ys!dv zYNJW#ytNDOEskdO2 zxI)mV*tO2ywLx+^2NsbYMLNXh z^m?%0>mQ*8^s7lJzH+#ex5`*u$)j)3M|umP_z)Y$rUJqw;LbI!B&Uj2mL96RK=g93 z(7vtXKdw|Qd&30VzZ}L;Q&Pc_@?sKMu%t6SE|v)|A25UAP5m_+xAj>>%NBJXoJC64 zHXdAgZ96|}af=xi5ZjOt=!Ij~E%5U{Umc`+RCdZwJYa4=d?Y;YZHp~6!z|z3TFE{~ z9d@s1`BQdXN$*+vAfrQmXlDItAA}DOjSK*AfXVcZaZc#fmWP zxH|aZYgybRw7x6_PDXqFxh{n~`&&X@!0Qox6p>vO#EAik%Y-qpZ;;;29?r_!MiQ4B3+~djS1y6P4Zh|}ps83S_4-Iw z5nu=Pf4`EXvK?J4S*r9{x4JvBhBR#_P`aAZLu%W{+h`DyqPzK5#K?_(5}av(3ZWynU}* z=hvHMlC|PD>?j!n#Sb?otuPDVFPzTb$<+OY_&Z!Qe|l9@M>kBWEol2NtT<_AE-S@U z{I+c~?AdJD5?l9jzHnnyCt0Fr{EC2TmWk=roZ_8;R z+@KNx5_XdvGFY>{rjni5;_-~VjbG+77r2jXjM~5cLGnzEB6oki`yK+Jgz#*McvK7D z6&XiuS$R;(_>FL`^VN*btPQnU+XJ_>mxD?cv{#|*n$0br!^ovePfSs^VS?%%`1>Zk zszp-mnvzkR-Kkd(hC z4S7i0q_g!I(q5+GM%&J8YdN*041J+^Vk-#W2Q)lu4Ll)pIVo#^a_LT<_zil|9zoKo z(g*Z~_*WC^R1Rt9lN)(Q=Y`iJ6`TbD-CkELkY`T7b|26l(qF(%r?wrewX>ASEi z&*P|}$s^pmGFbRgf9Ky(T_v-}--pB%t;i0|hKv>^+C*%$zzNiOu-aS#mnS!D{N6#B zdjo&0TMto@6{x}3JB;7zFLR=71vmR-cjdUjHh!+7EzU=7@aoZWqX6fr-z)TD2KvN) z84%SjKgqu3&m>l#OV{mhu4NfmvAuazlss!LIOUq|U;G8+P8 zb2FNWTv#7fRY{|l8CBpqiQ9vG=JshX6xK!uJsDr@&`Hk#Cl(3f)x~3*%iga9?%U)4 zvsn7Ck0gjD)1YGA4b3K=SfLSXh+h(tqZ83FD;@%(CCfGOebIDHTznQ2OUm7oCV(d+ zmott|Q>VA;!+g7C3dU1Ar3Zq|ZF|EQO-9Gv<6pg+SLCVt?!hx5ey+hk;knR&{xBcw z<;d@xk;CtZWr%U?RylTAF_)t}+EQD};pZGZtlwr8J4-zkQ`0Ff7zQL&Q7Jo6mRwlZkou$l_&#B(*nC`zu^4OHf* z{0TU-&T7eM8u-)U^lKr+sOHzxcDhU%?gqQsPeUH}?h0+&%X2p=Dr+bYeT1rzy|KHy z&AIpLD}NbER=T1e{+BVUCRXdbu{r8%jtL6F&~)=X|R%BS-lRkT!7e$W95x%0uCCBaO?PC_FEU zIH4u3Om1^OW+!@2yo~1k)Y#^j-Rdz#fqqhJ;pw@$uXBB)pa;<4Sf*`;2-e*0`TO;M z$_K}|JycmoEd<%rK=mpY!sC;-8tyl7HvT%Zn6_+fRms`*MEK`MTzH-P^&-+D+TU&K zmOm-*8DA9gtgSR(F2GWL5u`JMHQ~fxHZg2O;Bio=&& zL(d`!F5}0TuCUHN9o)1H(Mn;*nNs}Qv^Vb^zN$W*RB{VAr0~v39eR*sFoM`>(jxZ-#nVHhHo3BsdeJ;&!BcEzXb&sU+7$|}c8DhO||@1Yc0Ygx_L zPHd{+X@?8--SdBLm^iT-|wYr{${bbAn}zt-pTnlJM%1Ttt@3bz}!D zuiXKhc4(h;VkUIZSt^<8jAzr^9i8{BOKPutP+FvJBA;a63Mf4P<@%l%T1kt51LINS)T#$oErBauTbWhH#`d9t z5N|^VER?i^V|#BtCMyl!+#&stE95hc&Ccr|Tm^92fY_z5tKpz`so^ zbT2_@ z_SuhL5uFeMTg;-oIAvuWP%72>VS^2oF)gaBa~9E-LA?@WO23>*^_NvBLoKV-l@&?m zLDo4EiZsx(KSGh@?gV$vf9We){LJj_WXI&;2sOtJC)WO=u}sBaXWM=l3{B8I*ZVlE zE$^NLT#)&})7>uvF_~tKm3+o{>O_U`1P(E`I4rFE@dxky@{fq!0pL@#n@ zv~@o)O2V5Ks+5e@Nd?5~Y)4dLl;H8!ib>`bNzV;<>%S(_@c&Gtr<1>iCK?o=Gd|!z zy*75H2JIlUa!otzPrhN!ed$e?DCeWDNgIo1gj?lr$-s(@MU% zNON1ggqyiYtP+a&bui8-s7>z(v6MqwOh+gv?bWR|;0~V8x`JB;=7G7A64RIU8%ZTh zy`8;r(Y1`ynLBXlnr(Vye2|mfvSgP;_zp1}tGI0WN{onKcL;#twUtot%rud!HqS;m z)lTcThc9Xw&3?@Y)ZA3OV%42P6+6Gf;910!=1O%E>NrF z*1?p>+{e5lusDhs9&t6((@*q-Q-jv1=wG3DV#CY1N%f?(BJH=Jy71`SX**q7Dz=BV z@w99l6|_oX+#7;r!lZPjGnyK?z8%G}FE~q?)QCId+)#`j^Arf^TkUa9{0R2OF0cVq zxS}|)B@h`7M${Up`GmQab@q(qn;YY>Zw*U~UkhnRxJ(P4>eC7xsXyWSQq9UqtfS?U zv9paarIYlKufDqY12==tQ8ZQEwT+)fW6}b0g_cqWApk|w>JCnPGhHQNCCjvXX$mT@ zi1~O%v}P$IHR}uD^g1>oy-+qO^P2`TqMfx?NydWnwI$iBhV-LJaMAYqyI0&gwPp~> zvq@<}!$DT%B;ydYQzRwxLL0H?(&1>@&rdi!!|st+5Tv9+!hA`Yvm zqZtv8(@g=6z}n1%QehZvTU_n&>s`}$%_JCRgKzLp{_hOnHW@8l!ygY-rAy?#9yr84 z($I6RlM-V?I%1@>PXeb5=A$H@|w*FV|6pq={4_tu}(1!{GmNfvW^WEiCNxxN4tb&rET%uIpkB=uCxQL z@pt6mhN<&M2GDx^G!xkH-nucG?D6?FZ!9Gk`BeM?Kk7o|Q>;4W!csZIRo$dyc}EJ( z`RfTn=GPbnscyK!EzVoB%Au2{!OTw{lPB zh?Ek3TwPtyl3rn3>QqoKV#Ga}=} z=vWCs>;1q6QvnKwvPrKR1E&pwnm_U{YOP&w=bN*a=Fv*D*Jod;+f$qr%bx%uCSmgm zh>3@j)NGyC)2iQ%ryeMRoTaP^-2vm!AfZ+1`FvxMW<9H4DBxo*%ZN(oI62EKWmx@< z;k0MBL-HDWl=IZ)nBMBeQ@7g>?|gG!etJEN7#zcHl{!U-7jr)6rgu$Cntws0T`Ze} zns$JT>EAS^_q6eESkV(J1|b95C}WC_FWE7lP#;bB1vClUGI?}?qhu6h89N~m2oqZ# z6j|qG)GIKjsaoZRq>E;(gZ`d4YG)kni$s+tLz)#l)7X$RF}j zK%sSmc3tg^l~!Bt{rzL(_DP+9l8^whp{%q3n#tFovBvB> zM5OUM@cRz=)7L~Ses|jezA*krn6lV+mZ<$D7^KAL-qYXz>0gqY_QO(OjI`a#{2!s0 zN1!XMdU*6lzbgxi(=Ihwt@%gZ?|F6ukU>>`E34wv3DvP}061GcIiu|io}I%?{RU=* zyx8Cac2c$Nx7yctg9f6G$ARXl9%IZKLs-#=uh$a0Q9$Wc-@%iF02~5nFX{$qp=v-Q zH(nxZ4fFIA1GnktN7idJRliN#!6btkY0%=w=A#_1sWT07Ox1paL_)M_yV%Gj017sd zo4yre280kSvr&iknGMyCA;>Uqb+RD-$ws~|B3cjw)rNs~MRlm^b2rqU5>%??4W9c) zGibW&%jT8e>=oDe*{Sq)cHZg=_5%az%?E7C_Ef02j_j#>MMb`M@*qV8a_Y34vn0qc zv!De2*tBhgzi0*olXw7cLW-CLBOQ7V7!g{$+{%a6P+V;EoR?fc`r|8oKxP$XwzNh7 zYd}cw|9p31y97x0vz96NHkB{u!C?+?0>!ENV;?2iB2b+jRyM<+*cJ3y^?|r)sL|lg z%_xuzJO?$xO$AI*)HiL7W?z6i8_j|otRSJ1;j{&!+~|J&Of-NT-}j`@n4ohkg3VvM z;~LH2I;I>kYs$u{+wBRUMm?*Uf~!!Oh7!c|YPNO&d0uyB>S>ZXfh4{kf20)C zs?vsmgnE{lkO#OdG&3B%Docz1 zj%j*YgEe&Yh4tFZ>UWQWPKZ8WwgzokWW)*?G!_9ScljN}(Cs}DT^(l(PGAh1WV2Dy zeLsg_)&6DHQ_yd$@S7-4C&_q?VDEsQNgrWw?U|_UHebyP2IsMEfOF9?|KX}J()QqycX0w^7Oi5W0t3m>Gt-duZUESxazeOUUUUkT(_X}zEk=vc@<6}3Bn z<&vTHNdNO4yKW5=+{vkjgMDMcS?OK$Dnx|X0&QfyWeczd#BF@g65Q=LXkYMH7+Ck# z6u};Xaed4oeu@AoI3c7n12Pyyza;!6h40$ixGsRMD>Z7aNqATxOeXjRl;r zj(xsbPrtETkVS}a_-9TlLUqeTh)34O_Ib}cz*cq7y7QVbk03p)E|4D5cb^d4#3c0> zR)VIC(3vk!r%f0ND7iEMoisx@tumxP1**q62Qwl{@ev5~7}YQ7uj_}_(vlFYC9jIu ze(dl6Xdw4Ol~Ar9(_E9_-Z1$9C94Tg6UALzNaBhF8Xw)tchj0$*J!29`|jr6G1Snkn9;IL%T#t?mhrco<6k1p!p!;9+@ zBew`L;5AOff9kq;hD(5x8BCe``i!_U)M}Ky1?nrD3Lsn@q$ed3euHQ*Y`(AJ${54w zlBC{Lz5{hWH@#q5jssymaDfvEGRC$5r>J?c@xY)-018+ho*ET^PUw$7h2;z2Vgwo8 zA+omDE^Mg#-#I1o^E+_HC#bqF{DG;XxFU$oNiU&A0E5?OnoTl++)^7AM=vthUIeVq zcr6fkiqlfh+wR-H(zC^1wLhA&thwbo)C+v>IuSQnGpn`DTE4$d%trMsXBG)T1Y;Aj zyuDbtKByY~Hz`tz&2hMU^97Fw|4Cb0vvARX^y4kqHG2T*(no{ws4l#P!)GtfcHxKZ z^zkjmU12?I+r5TI`@t`4!hm2VdB8V>Y${&SELeE0jaI4 zK?6T@3AA+!bedbe@zu8pZnR5s4zSiy$1N%zxUj}KrOdT5el=0on+0Ejak zk{#d4o6tmmH(ymHxA){H>;QIn&CluHyaKdtf#Z9j1W0+$mLqGoEr0Xvk; diff --git a/hacking_religion/_book/chapter_1_files/figure-html/unnamed-chunk-7-2.png b/hacking_religion/_book/chapter_1_files/figure-html/unnamed-chunk-7-2.png deleted file mode 100644 index 8acff029a265b4587ffb870321d541ce958c7813..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 52848 zcmeFacT|(x);<~#6hw+5M5K#?NE2xyRZvk8P!W(Cib(Ih!$!dk2ns4n3#jzoJ3*>| z5Tthmq)3NQ0tw`<*M0Umdv9~b{pa3q-246bLq|pydCOXJ&GO9o%=Pu5O*C#`B`=*69Bm7a;MOR<6ERM!o zaEnagKU(n0p1ex;DeYU-H-hdb9!|^5rBH$QMR(tm1)j%t?kXj9!6_HYMG7mU%B-r} zMs{Z6R(xm2oR-I^UX=0cz8O15%6~dXV7hyUMSfKAub`|%Tvfmg>*&t;d$1!=L zz8I!;DuH&j0R8UerDuri{O2>m_8W$u9hv3Y(jhzIv^pFvEtZzed#3Gri+E;?Dpz-P zAkMGk`lwaIaG+X5;YFX5^V4~qw#WLrdo+0tImM^vEof+MDpu5W_>DH#@YxrVeMBGsq-}`aLW@y=9-zF~z z2nZ=d4VOlL<12JLdfPq6>a=*HtV29mQm%B%JDW*f}B1;x&cOepOM0>m3~!&e$bWj`vB+@Ikp9{W4q6LuUBeHlM^De0C(R|B zCt-WPEsodm?(D-#A6V{xUYPrOQ6YuEwc43cw_>irRdvkQ!#vZalk%}WSC8;5p<9uG zSe7$U-!C$8e&C4YX;FU^_UP-C+caX$Z_YS9!jymQ@gU*4kCX_l3Y~Mi+O%)>=UXypw}WM!Yz59hOHr!57XKM(c9JE947h}r%;#H@tQ zvHc^yhx`_XHA}@7M89Yr^{KGaZBW9_mqX(h=z}?*Cc;o1i1Y5#hk@gjBNZ@mLYHTF(8De{{wo z`rZgqL1#cf`uwA(GIjNJkCfHs7=oTq8VPy2N@UVMhwE1!ZqBoNl9b zuFgJ?X*{&%-r`!1(b>qyIcEv@L`W+Qzzu%%Xl8CZJiQH+HYBhI&tQ0;{Ik+)hnbl#W8-opaR~ry;d!9a+Lp|fLvP8lm!Z~-UMw7lapdc=r zKD_lAI7(Thui+!N8t*|9@PzZzE2ew57|2hM9RHoe{1&-Uz$=B?f%ippyzd2`-X`NK z(DN@l`tV`Ex!dQAXgC62U%k&A&?|a^g7fUnC^`;|^j>8I0q4H*z4|+Mx#ahyJxQzT zs!FuXb^->6w_Wzy#&vWWjS^HoUGs;Lkdjf*amfGWLjW2174C;ok^lJmk3YOiK_OpF zM{MY(raUah+KS=EUoQ3M#rSlY4H=9pBwt&^n1S|N1`9eQi>j^8xGb z_6mE2>ypmRF9|YIS-Pd+w}VLaE1W409X@vc0;0m%;$fcQ)u5xd!%5f76!A>QQ_G!Z zgL*Ty;H7&}(eikG;r)(NsjvC8g51V^B!pnS;*=Z9qf#3`x>HY~Vgzu~vAx`)v{e(JKlA)nJitSN2hZXEx0B8x09b&}4%q&{Wv z(Jzt)R(YPD&cAQ=5ihZ^p(KA;5vzDRH~rt_^Iw991cS0X%EyU}bf|P=YZJ+s}!~n6UZJO4p=t274E-orGLqPqAVEn zQGIiU*cj_k3i)B9ZtF|``s2S%;U*=8{DM=#Nn&G5cjaM2G_jAPDF42HfBtQnnmkMg z8I??I1DOYtl6JZdh{oRe+r9pHEqNa>c(9ZQOZh*(E3fpIzD=g+;jy22XVzDmm^}2n zb|BwmxV>cP?mxAIyml>HqUmvye|`^b>B!@B{@mTSpAy*=9CsP%{NG#;Ber2~-T>z7 z4j+R8u|1&;HWQ;Tv8~O)1h)32><1LYcBm;B({6Z6Owl|7N~opiJ|{6<@(O6LgO~gJ z+8(UjuTms`AeO&wpMyR3tKvIQD8D*h2MXo?zY1keFTp4-TE5hFR3Vs#b^U@)aqQX7 zOs!lM9oguomCir99#~ejr~l4X$sB*h#WJJZ44t4-I{H~Tac3dXX|`jGe%;b9)Y61t zr5?d1Q#Vv>Wu-VSa>9Hc=h7U`TFvvQ2j`fsU+HQS!yxA+M)3IR9L%gu(K800bVITh zn0sVi7bma`;`fqzpSD}4)#6Y|VjC7R+Fr-!#;U!{_u2ERtxK1(R1@7+#(J}};&XWS zzpdA2#*62Y#OmWr#bsX;gs5RE-*_j{y)&E-Nzd^b(UZlXc(5NnbJw1$GCx*@_r6*7 ziJ3Qh$4ddfXnKYYK|e-cMf2Vt{j#@)hAgqy)6U6C7sPcB3m>nmIqGW4olY`92;H&`wj z%IAxl3m&g$|l-i#D@*={2z?!x@BJ`|OXE`T#C7gXEer`;67@dVs2}4LG!bC@cEt zjswRU zU!7I5|7nF1(DCEddg|>lpY2h55U2)Qbf-L(beee*?>fZ0nBUAc@jXh7Mryfi>WIPe zD_-@wGKZ2>W~WD}Dsr>S7_9 zkz~@X1`~hL8@s9^W;w7v)f_?Fujiz)=3VWzO~a>^b4;jeRpI!+{%Ww?F(m#wPrq*e z_m-&oMmU0HrX!yDiu2svo{imw+~D8od4i6xdtcP^S}IP`Ewx>c={QEj$df7DoT0;( znLQG~OJlx>)GN};oCLEFK8gF0iZpogUigtWrd>krMU7gFC@;9593?<6sG||S9`4@) zj@0G)?Jd|Zm(MZ|yM7{vKN&1ED;+3#N(B$H^I6cnj%C_5te#Eqs?&EHWw5Q@?8_Ur zt$Yf8EUD)<>LS2q@~d|$?_Y}}Z6QnC9(6+;KkK`XLDHJVyJ&VBymVOk4Bc(w8CN(( zTeJ|ZL-`HWl`4$tDM`miWpnRC#j!=DBaX@sOKtTpFBNsyO$4(WEVd6OD@WUR-Qsyl zuO=;=rBi%i1W15D0@vX(2fMx`#o!>P4oMzs)ZSL(o-ke-w^$fDOe=@C2k?hVXfxBF z=I^hm&Q+d(N2Hx_gm-@0oCtE~PGY^qPf|3f(mh7?s|6>B|Y~OthYmmk&W~t*`SZYde4JV5=a`! z?=S2DF2dmTqG`2Tm)(}6OWQysopjaMtS>%T0xelwcJU*Y0kXZO?xD6j+~lHL!2EW^Zd)2+GM*=$m!KY3tEh z%=e^ovXK&gSMz>vfkw~Jh7H5FS;UCu!b{{Yk(f*OR2SO|zhT?X2!kIB>28+Y%AfRF zLMjWEpOs!~pucYK*~**xWYlfE`m&n&2<}qQ`|eaV+Gu@OZJV|BT{g7Z=~PGT5WZ#7 z$3dv4jK`wtjJI@=tg6>awcGK8Ca0h#8FhruX76eetxwuz{{1$@zT>m2X}|wsdi-Gl zedLjp^14DRYEE`#6G5xZa{I!I6$?2N%81?j-S5@p_MDIVF6Y(L7=gkEPTyRWW;QSD zQ(~46-0^G8q4oW=ve<8vIj5d=Amvac58q1I88}F>6&OezL%EubOgYv1lNhx`o@>ma zCQtOiZ3(FTK|m!`aGewW`~ z9t{m;i~OvfxWk@mHEV}fSLhWBaKFumQtK66$Bp4-IDKbAmGu zx1PCZvs80gD1j6prr!~VZC=~?vXUCGGb>rL`P+C~D1YStMo?}Y%|?}ArIawVRhx2M zk?EA~YB#e##A>PG^A?KpJY3UdT35o-U7RuVYYBNCw!E^fUJAwfDpz(wCJd!fW_Y@F zGy#vEfd12+t66JeZoE8(81oVt`-<`-Ozty@JU%%-C5Kx<`I+yZ(a$%&?hbOpAwB!G zhiI*J1jnG_6XEc5-#Ft_gMBBFJgRGV_b>MfTA!@%c0c~nBwRA(Ej!_Nxcq66$9Eh| zu~I8lBHo*s2x{=bse7;8u0f)I#?Q#y7g5E!5<1HxcHCUKcHx7-yKRDJbDGTuz2)?3 zw5P!LuC=~}jVtD(=bFn6s3cu|_F}4O`XpLh!uu6+;t{B2tj;QKa#ygt9lYcYYwn;; zhsaqb|EAT8Y^V2E>uKS^iH#U<->pKV%>+HVRJ*dvYb4fDQC*rvCMX(G)T!~VI-%Er z2(qeP`SJ0Le-(bcO?O0#xrgTWFu0hdRmd=Xs?I~5;d8RfVnfpSEE(CL@-=+oTE^B| zW;RSTLCv}K6>o8H_O?tPqt(SfUc%*_`)9AEBF0d-5Y1ZKt5kWsi8g+RE)|$lY_d2y z`l`c|8%wi$z`VuyHh+G_wNL=C+#!p5laixT<#Q@Klnt!>mMCO1ntRPS8x$W+zVt2T zBAH6>u~foOr@wUTh45YptNtA7V)e0Ufk?B>b~&XcmNeJX4bo!b)$>E)L9zRv=_0A* zr>M>^3o~uch0Q+v{puVr)8gh%TZ3kHz4iAk*`HZ*nprWcQz==^hGdW@GF#e8r&=77 zBY%+ndyLYrnRt$Tm}t;5Ahot{#cgyPk~hlC%&O?_S*hds^rX>dBUBrSfiy>P%awLk zp<<85RHc?4NUK$G+{07ZOGlVtcx~%}#?oTRK%r%EC*8#S?ntYdVd|HyBC_?vc$cRw zh!yA<`UHe8pe>P3lOCcqxX~5HiP>N|`~+RD?U*K3JJUWwX6w9d6JK?yI8dKH6S@2I zxpk(|`h7#AE@);^^Sc9fsJ#%yM^ifrZQXW$xZz3TYYy**7-}cWZ1%!aYIu+JVd+zj+ctxrWksr z*pLn(Jh5{7*s0+~n=1Rx=MrNNNBn9@jyyr(+fc{0N1W6g=J3arSdMRj2V0%b%nbrd zm@|M||G>Uyu1+^N6xEbjLdz_kRa~j_B@}KH;$>L__JC1O+Pw)UBu>xaK3<94r-(v= zR%WBq{`*U%68A3%d?Vrsunk!hW=i2KOp}*{!{RSH7-Q?%_wQOS09R{dQur_t|Bj+c z=taZz7b$AUG2`6UvfxL$>N~gN9MJ6%e)y>gV2G&J?rvZiQr)kQL*7V3^))N4b?XJm zg?H?<8WCQv3|x9O8hd~Et%V{^(uQKDJomTk2ql+~m}6!`Cgyv!5UjQpKT_=b_1&HV zy@e{1N?e8#giMP6s}>>Nne=*T1X3)BYUJ6(i~N_!)`GNcW|~FLX^p zIIXMhs(*}_m^Pz`&2wseo>79ObvBRQS+Z+9!lPQ@hBg`pi_i)ue^{ zWD&@mO`Zu|5O{Qh5h@p4ikJo2GJ$Yx%X|ClC3MeFnZT9nXsiO|f+d&ZHA2a$BjL}a zvKr9Q4l%$EKdkZgSQq2Va|ysE(2X-s&aPl3M}X!5C4*}UW1wQNh2B^sbF7p1g2dLV zTZ<$W`DYfY4n?E0y;6TgP^pY;=kE053Q zr1=t?&5~OrBy-|}jLbx95xK}%NXIFzqp$kQQ<2R6X7lOgm)ae}D2rr;zj}`^Ui-_) z7h0AY6UkP6KgR)U&m7M<_v?lLKZA*8y7ImGb??d>fU3Hx-E18qkE{)9{0?sRpLIT% z#{bO4Pa!)HkiYMm0|7Y@5HgAbMf_KjCGUS=V*U{?90onRlg$0AQn8R!lmFMu90@6VocwHd`8>p2KBMkrrBLILK^<`;K00^H}ZhtMJ z9>C-EAREHg0l+=`I!c}=;jDb^#-)!3m*&fH8$al;xQ%591-ecfne@X?T{NuS6=`p| zUu%`LS>gt+^&@aZCdR4`z%-|4(8zJimv&WaH?X5CzFOY#0Dzg8iM87@O43NrmU7yh@8#TT zyOt;rppmIr>=M26j?!JAXl!+c-TG9q?W_6`?3J{=s}4&;#h=S?K4J>b|NEuU%6`G;nH(^Qoy%f5Z z#ta=CBG5xew!nHo<)(J_9&Raobbe~j{LY5@o!?A&VT+W|)E=2C1R1nOtX&G7W-NfqmeR)3H1IVdT6BfQ{a){U^dV5 ziy(Q?Xz)y8)LA{Yt%4YkM?xBVp>q|s0R-Vf3Fk7o4!T8e>QZsFBEWR+5W}qK%wNeX z9_n=WjctkIfe&w`tNCOs+epv6H3>0=GD6!X{5SvM{rt>|1w5w|6@@*A2R!5P2=7jb z>v3BiDQ`46Onv%+_ckrDy+(GLv$GQ>YTF6&GHb?_zL?nYo@$>p=|qPiKf>OEZx}fd zOoWajPdFgxNFsm>1^Of(e|ftKa6TLBJt&1U@#zRV|C`}g^)nK?4UGQ?TzuQ_V|tGrx|LtigOvZSzQN=CZ5o%KD3h* z`MZDfFVrQkoRpeY9=Evww=JK3(+Lu5lhTRf*d_@m1$>_@$$`tRa;YS5DqJcE0JbtC z&fO|TqZKYm0Do^xNL&*piqTPs-ZsoU8;-<{%+__Q$+3b=a$iwApJvv1TXc*VAArTA zR4~D`>}&~s`#X8tV_p*NPQ+LKIo;gIGaid2Nt!Eji5DFv8!r0dv6Hx-bah31h?n;= zsJu2p`fO1OpJx>|zGg)$5%DXU1isPb&+8@aEHh=j;!MF4?|gr)xKVeWlK6!DPO3Xi zhgBIl97>ExD{q)dA?i)r>HZdn-@!;&nSiWs|3&l8#CFfDBg8U_@`?OFc%4D6XaX$M z`P|f;we6bi>Qy1ax{!;26({knbElSbm6_gAj+oFbX(mp1`9o6&W%zCBAGODb8BNqZ zHQL?y0cG(8Y9P4v7-4^fz_z=!G(0mka+RpKt1y_m!>)k5d_}3zm$$-@oSdh52O;J4 z8d~}q+a?14ZJT%}2G=&r$O4pp>S;ty&F=gvlCXnh9yZt}I%kQt0kmLa=?)fK_1kZJ zRf03)u~QNK)f0@wD%JgKo5*BW!LItYk6S@l&qk@qmgg_I{AVui8)HiU>;>@G37Tgd z;3n;aQ0{?mg8CIb|2Nl9I0PPrU7!R5@?#?dTNOy6qT@m(iodW5O8U**_cr?_%18in zf<`%7kXon)Yy9@2kwU&TU{%zC5{SxA&E-)?VkcIsSA24h z4|i^`tnH8`s<7A+D_F>TN=g$jt{_j#L*&g2hZzPIW#pA2*jR6bvkZ2&f{EzwoW(pM zW-Go6%aRF7qA-^$>NwxFxLw8)D>j zSU@`?kbvDlc6=f)o<-K%{S;85b6-CwVPjD{v7OnvrS?M3_9LF0tMMFnYMtPv7YQ^-o82zx7`E-XG9Uni1+*(`O&8MO57J&A`hj+e3D z0z-FzS7CG+*yTDAv^2dheu^C)+%6$gOHEYPtdr#Hb4le~=6j5zAitF{cI$_lU&SfH zRw>FRW*n4^tj>Li2&sa$)+;@<&)u0)}U#0Bd!jhLvN=+@Vm94`t=DCn<91Ak6 zNXFr<30l9hQ-p0lf?MbgRGb7AQ#>rO)-GGfsni)U`}fcP`XNBzxVbs(G>!AC?J1>`9Wo**N**Gg!gx@#;vAM)@;4< zg2s~V#lgZ;Y6;Tijoycd&&ThznpE<+!16N=Gi<}2dp*rDsJ;Rfs0b{_0>vb}460H> zcZjC-=mt(e3*@)g?+0w+99`3MX1FT&=_-g2;KOj*2)T_;#n9oOY6mhTK`sk@Prh#1k2-)d#KyQlL4xsiIP(dhMC5me8=nAMx(&{c@a~pA(h;!=TZGy7u zPBULDDpnQ{1kcOBpNwhxZ`+Do#~{N;8M#D|lQrm>18&zJWnVv%qhk`p*iI9=k^7?F z^XkZ>AUEyizSam=lwREHQCFk>aO1h9P6u(h6jdNlK!mAyYF ztyUA#BgQZjsmJ-MJ6-Hl?GCZ-fvv8b?<@61|bRGPu!PKkydq=aPaM z7eci>{Xoh%B$S1k5HK!I$3NVU9B^+wm^ zg%yX;Su~RUr(5bg*SVS>;lr=zG5y+TYjKcTpec&Dr&JEvu%W1x^4WxmNM%7v^;A`A zdLC8&t^E;TEJG>@phWNql~C2iV{FowSs)1jdf*r+A9Xl{d%C1*?$T)h!O1TsU@B)m5$ex;Xn@>N&-fXpsxF09>_XhepbLYNX7d%cfrn6 z{!R5`ejsRg!oa5~Dx(Pal`*!J#GN$(25|G|oU?n|A|NIoyEi76(isWd5tJ zyg?-@4ciO$!v?Pcr%TkvOgh)BYW1FU!`^4Eh+_^bYQ#591|7Ju&hT6yt!x>EjGE;1 zt2|J_(fb&uN_3rC$xgHRC%6t-On~t882jFw5+7e($e(ZVw{6fF1BqO&?`CFpcC$25 z5qcolnZGWk!%0;9F90f|CYg=c-!A&EE&4zRG{6}fIZZ4COuGq)n#YTJi8(iSt3j_G zPbVv4zH#Ciz|_3nsY%S9$ZvwI`Fwl!OCpOG5CW*03|DojiM>TH6@`4JMClD;uYd4@ z2P^oi$vF_wgFX1GCOJ?t|I4+gbB^!p-fV{-UC9%_Q3+B2w^X_8d!%xP?%Lr#QQ#L` z1ohGvO`5`>?h+RteSQHI9|p;6j}*2mwS)F}BcPmg;adQ zR4bm^#FP<10Oe&!TT;vx`m(9ORVkymRfZlb)U8c52V3Qor_3p@j8)gSzUHe3E+L&Q zAUv#sa>k3^>rqI(T(c-1H5$NZaCj@_W;@rJqzD!AK?qKL!|(LzqW0|G@T#NA{w zJN&CGlaO+r^`O85puP?St;Zn*!zQI!_}N~In(qnFLh!U83cn6HF;5VL-TnzcqoH>2 zno7t3(Z6keHPrNPe7CPOWEBIEaG;t_D2A-dE*(1!u!hpr^){hk@I_9e$uVMni93R$ z9JaADi=<6O`g)cT_Hl~M;ku|Q07LPFu}EIhbN+gLC9}kF;f<~>r9*BHz;Fau0C>_k z76-L6gdon#AP%h0(8#O9-2D zO3%&ti#9_=P{2}B?kx@fQHYk+9U(jw@;0iTw#0DXc}q8mX|&i`pXOw{#ID$NDyOM_ zJXS53#qs84P%#-IbJN7#^1qZ8f9xRH1qkQUtAU3Zy!;_I_?VjP&i7r0=$VFU9zQ^> z368a^DQ`@8<*@R#jOPcFSzLbOEZy_qjOJ>&BeZOK)(8uF2oZq;tW^C;4rl|yFZfIp zKnirU0fYt~*{?;jW|-#2rBJW%7-9=!uFH`QbH=VtOzf?Zn6_)elIEZ!8&um|V#vDPz*pMLoAV)?cMQI*@Z2l1iLb6%abcypiaFNU(A`h^PFd;flg zh1|dyuQ{a;*ds#fzNGO|C<31bo-3Ikv{QZ9l0ia_T-{q=)Gs1UV9INkv>nH0=cRTN zHEW|W0Ff~&Cv9?{a)(>nxvPCH*}Oh6MlV~ok0K239x0`!)^$3D5jXYR{gE2F>J-fC zN@3C*PQB)3b7gD5q(1H5hq|cNlv4@}7L+KWwh3Lgyb z@)}dA1w<`b{BP6}PPQ@j@$*wcy$(WO-5IbDY+L5(jZTn>%`ItMg0hs%BkCJ9xMeB` zFA8lwMQ1LUmrlryk?UJ3BCBE)A47vIq@6dX@>!uyfYyL?9hv2<9nZ^BdC(K)SUXPa zZf4EayIk=t8PKTZ-I$j`LbZ?m z)YZ?T zPi||O>`qKZ4cwlDJ=Xs`#rc~LUR*!P@cw<|=gA;$5{UG|J6s7L`W`JVr3SP0c&u?wO6zgausw90$?Hk{GU+g~=mJgA=asIjZCl3S6~ zZ$qiZ>i{UG4b>a^{DgG7@(ZY1-O+u&jp~KLc18bdyCA}%nVjw-=+WBvIM$|*6+w8B zX!ToO;Qc-=a`Pi9ChnEwJrSl3p>(*I~PhBeFgCFq;u*Wi3ZJI^A z8v!?tT4dkgk=wcT(l3xSG1j)iVr@nORUTv0H2yu?@vU$djFgpRQ&B99tmo-%kAg@nY{qhA(zAnlpYP&^trA<(wV_vf$}IBFb=(h zeaDeSl$>`bpzpAJcfqAS?-|=g02qI}?sNREjuH1X^@>MPb;Y5F3`!*v8JRg35cWmw z;=`{37ck#*9C|C#VtD*AqlKrl*G>>KvLfV~NXaxA#buXVuh;L|W5;mGRh)ZFX!jcq zAUU(mEVGf$fGPWW~zQziC*p8pmuCI7roJO|D%`% zn~$2|hU|7ZI&AGQ(a`#2HjV$x(#kEK1b1TxK<~VhN$Zh?*I)6}a@d)Uc0)WCwfT)e zI2VzX8qv-bAzd&&x13j%cK!!|F!=(bd!KE5dbi1wEcEq4^6NP$JLT)MWQEX$kgeXd zOAmLK-B6W_e8zwY_+v}5FTVB&v5@+9K%Xora%82bTeT6ud+Of6Yzff-ywn&lM1@KK zB0Z@jw|mcFe`hv2TgYv|DA<;x01Ar=8btfLzO?A#nS;o`uY7)q_#`m{M;Xmyf+Gp9R5stz(Iy&zPsmO0asMEUU zRbqLUfPK>EH2$)a$0N?y?6li$p*?Ko0RLs~3}OA!d+GHAn2C-KH>~^xZ=2U(n}OzG zeIekD8e3Xs3^=w4gl_if+I_P;!2#}v)P?d+jZo%6b}IpXF1yAv(@W^ooGIC_Zyit} z|KU*LW*7}d((dUv@J)l?IU95XifzUKU=!ZZX|l}B)*RVec4N0-qbHJvF|YK0{KO`g zWL@o7KPvGPDQP0Lpq@6@uibFzp)rr>@s^Is2RbS{Y2|&BFj-iMd4pkefaZ#QosNHqkzL;OuWqA^!cx7m;5j} znf$Q9q3=X8y7GZwj9IU&fJo!@#3isq2g~=1z#J^!!S4IJH9gpU2g>swy8J+S9@xHr zTjxJM9JnqAuFF3h;s3KePffAQc7HgY%KY}7SC0s+F+SW=pn@tHsH$(a{WUVEeSg%P zq#~_~kywhm_Wn@{f5GG$7b1Q?M_wB6VnbW4CWtuc6#U8lu(|v5x)T4`sy}0r&>ucTZE~+e0NZSZP%#saeW2!gVwHX?&^lc^f+*L;Nbx%G;|CsLy+$S$= zI&I~w^nIW;z3poS?ItF}v)Y{XTAPSo?vbQCHFLYCpM{fdhts}(g4&{7%09G3sjRhi zhFRGR#ot%;=`iz2tK90Xf&oV6d}(s=!ADWk)A`8@=P0O8*I!*_R55pAbw}Iii zdZ4hW%@t=o&_xAdBFd=aC5GA*X;f|RPrdQx0*`JMt zCHN?8Q3HI@%K<>=rFtK#2hoxW9So6fYZy zhL8F*;IG_bKA!a{DwB#@aO8MF3fo3=Oiavt_~)n8se(!ivLEr8uWGeAia%~q_OLsA z+5aS)YxMD;>8_uN$N5mA77+80V`HBM-28m>8-HwNZeYYpT81{+d;EN@-KVx z6R)752Z3<><#GlheHu6}@`6DB)-7G4M1zAL9!$=GRh~0s?8S zq-pHfC_jz>T_H;zX~_N?KGZDpXH4X)g4qx)5``eQBg3bN)vVPX1sYL*g4`VQ?`!=9 zemVs(#VZ3%r~VOY{`4uqEn#yfIlnhs5)nexm_0lZt9%(T$q^Gm1Peehrz&KoCqKZ3xI&(K$|dP zmA!^f!Q4C?23Que&0x8QI0&IBBklExfQ~htM*~1C& zI0s94u#^Y8^8bxpY1n&o-1k2^D^Gz8Vm2}qB#S$p3;--k+gB|rf6^-6LRyucr<5r5 ziu)YUjl32MMAgP5*uw`uJeZvSrzI!P@;+Yy+h6VGwQrz@BJnFW(0kOfi+(6==*TesM`#%kQ%vq3q{Mhx1=wJ#Z zg}>_5>QiDiog0jar;AP#9kc-3sQa=vvA0OP1;+kYykcgG59S|le@7l#)tFkHEaNWH zW>&Y6k6IQ!U|rv;CpwUH%I*D7YrMr1{{TOX+S7$%Z}_lvp~_nA5!t)}5VMDf^*uCE zebJck4RroAT6>4~PQf+``QFPa9rJ7i{ed4Y0)9`Urml^ceecv45qqN>f3D(RR^9xi z{0Gv+pMAosW@U1*(?WjQj1xDQZ60{^luKC@Eeyat$<{*zYO#eIZe~BTxic5xySF!usC`6oNE3YXb$q%#= z-Bl4c836O7qvtwkI@-K!cBhjG>R6qBtmE;B2|I3pDe6Iem!(*n@@caKCMxlNV8hTH z$+wZ8?k3#;dM{M?0hkC^pkeu24%Fv;N8zKx%n!lN ze@w$4g&DU4cCK%|IX($hjM%ovFFU8!=xR{s8oYR*;@opj>GfXVV?1D!ZA>O?SD6jQ zhzPOYzPn*2htuA<=_9sx*>85JgkNMqjjzWVF-9TRA-z|!1ZYV7va12K8_XIs!=N!l zXwi$;6vs|H{4B_IIJv1-3&qglGWCSHJ*8w zS}jiKrVHLt@Yu;!l$k@^*gWhCwwmk9CbzCfWT)wW)+*l4ztB0@=GH7Vme2A)C0YpT z{L6&D1G~7V-g77*!fRwI1Y%Hu<_R+8aO_a{h)Mf( zPhte!%9ZbBJ9U3lQCyDe%h_>k7jo?{l< zhPuVF4%>pR=Z#R|&-xlx&1YWSl>I%^ zKIos2iv_IT_=s*PkvP#mdjWJo&GgUMIp?NAHAan~P*{I!_T5BaiNI9GQs(+gS^20N z?^5H8ekbS(GI;&Yq=WL@Ox)B+q)HTY=GED|Dr4@lrq)(faq;MkmBXX0D}az^u(J(- zO+msIE_bL#G(Z*X5#P3U@hY&>S0pl6-qbFDrVL{CRmVlhyCNlAxC6F5t-ifeKi%~x zU{N`P8D4I5Z?wwXF=09zC9kup6;UvN+>)@Y@9YVfw+LtH&g79Cdg0~~C-}mtY~EXN zud*Na7Ac!-r^5Kqrnomm3Um}PWwZl5KngN5xo5S;4pV)`@I^q%W|u zXC3TV&vjh7QV@A+#cr=<>0Wf_Gno0Mc%}AkzsEEe_U?;S9p#_#+DzH@+n@DYmQZ#Z zfGTF!sn^rfjMc$(wGbxm@_5!FZ65CQ4wyskc`L&AAuTFQd9d*MU(miHXrMGah-zM-{6 zeIG|QzgY{w+GzyZfnn}*-XcA8M8mE*QuoYVIW_x^fk*}R7wuyGdWBNlxI?pH`r&;( zpKCZs?&6;GG3*r`>yMz_qU<(j+*7t9P1IP;ub|hBmH~|7ifp&}dicB(! zd*p+&65vq({y~KKN|;%K$Kye{2PrLF3%9@vR_cutL1l_SLt&E6qFrE?SG4iiW;sF7 zIK0SW+7q;qI;mygVd?-h&4&R{_+Bx!zP0@k^o7nZ`}P}EMLmYo$E#*Rf8_$iomg%Q zOHo-RpuWG{l|b#ZLnd?3&e;vB^wjc|1=QMEj++tj{A}Rn zU$|C(+`+z3q~Q&}GM_d{ZRf7&&>=bdDk2Kuz1BEAEA6@;8C~^p(Yfrx1~?lfeZUOq z6M_b0fySTbX@CmzMo=!O|Fg4yha3UFp1m%$n5UQzSQlD_U$C*I-dkSZYuxIpo}G^v zNBpDa(jq_R+akzH=s-?Q_hXs0%-OJ6~gUlu*`X8D+ zp9F_m7(4u=Zf6yCg!KY}348kG5{JNDOoDJy2_u>4bnqVk4-ShHfFW&jSgXau>P9)G=-y33?FT+R2a z#-ukFK35&X1u@&28*sygl^})JWZ*ePn)v#fj>b%~qQ|>VP=MQi$x!1t^M-^FS1Z>F zrTbyAY$-U`^fhcjn;@T1Bsd18%@}OuSSK;yP|Yex(F2(7gQ(BxBRN0VZ1yze>?!?A ziW%{0HRSTc`uiHoV_ zRue4%|F|P@yH$4rWMP}{J!Y~R0zJeSfR{0P6B90izR7n{_}64XEBG%d)~{;2 z6Sj&bp~wK^3>_o{xlA9{c|__d_1q_(HbTTJRs0hk=_IJ}MR4rb2hZu<0YOX;3Y|=A zptC}Z0qf09kImHFHUM;`%P1S)Th>y=M*HnVH-dH!a@%)O%s6GfwQRZyAa2%UlSo)ZVg(PFt2Kwe@fIz~ZI_58NS3oj7$iH0ivf}==DqY_2CCHS( znFc0_cmZ?|uYjD!f4`++aR;+ib%E>4mjX4~q)?FDCb0)mE*sgr7QbeFX=(2yg=khG zp@J1@alWxOCA<*xA!%03sE`a;@3=`?Kdj=rbS0VjdyRm`81wpSIn(WLF;+Re9e~{6 zI3!Rq@O}U)(T_o2Yo{**4Yfj{yO=h)f`)9yfz;x_+Dx0P20(nk%iy4>)*s?S<{u_G zX+1v2VcsUbBZU}dp>2YdSzkt=lTWNm1|PS7Nz-fRwFkU6IKV2b@;k09oCK{@aBKj^7(6cJE??%^qth+3hr56ML0e~!Fk zV0xpCk_OHaU9}rv)r?pK{sGPWyikDYd60=ZM%Bno!~x~Vy9kUA)s#7}^4V2d!Yb`g ziijRC%~S>C2;5MA>oh=g954oBLVi1KOl|I;s0{835zXNBa^w+*%+^R&F~ZX?$R)hI@YF<%7;y4xFQT!SbKT-!JXlRhn6kiet^#U<9v`#8<8>;is zW+Y9QyOn-KLnqA<@oZPyCJGe=pVN|f_2YZnr_+@DujElaUMQo&Y`Y}1$z$DU2S3JB z%|1N^dzhgh!YijC7CtCAoiMvJ9ZB)UwMI^LPbcz@sClx5UgUTO#Pa=EzMD(f&2^N5 zs#cOpKa5LTj6~rf$6is$jI)E+EVEzH?(@+Y`|_UH5NpnGkuAB`j|nK!#6A6EHtDrc za3HI0omFL%nn+p%#6b*)cnqA;^h^WV@`Mb@}4fdVASA8MI#SeRHI%AKT?$ zvT@yM)h{Gxv>YF^PM-O$>LHQJ4?n|G7{4Oaur3f-n?_3IpgLIM84trifwJ^B653O* zz3!#B#c7}Hv!IG+N_rNn1+-iI&$GU%PRI+~cMY)vT4Ap1Y2F5iI@jGio}L#f%Yk7O0c)fzwSV z0a&zu*Bg-MgrMVJj6pjYeqGa?k|E1O(QmkM5LGfnloi#czkGiLG)oi!?s+v+w^8;!^BfK<2FFTLLrLS=PMX&?O|r?yMiBNF+DvG)}XFtX}j0Tp)h4+ zif#LRA2_ma`O(jwWQe_at?BJMNSAY_6@YbH{S%*r8l0K>?iSOvBVb@O=`XEmA-xYsn%XvL|~H zx6Zr=MLGpFk6E2uDlcWJ6(?jYhux>CpGmHJyW*R#)8UAd`jTHWG*iB{)a$$x>-36+ z5IK+9cB~~3>;^Dzcco>~2*ZclzSA;Dr#NemEfq=M@A$_hd-5wgk7WA62~5aVCv=?F zjJI|Svi2fw_>Rc%j;{|@P&T4h`op4buuO?Yn{D?v)Y5F)LA+lPumpWVAa~@()~wTV z^wa68)$#qM@z&`Xoq};mx0Tz??|9liOU?s3RKH#gZ&Aw;@X8I%bn^FYerptN^Py*9 z%sabh#X&`8&g_jeHOA{pxyj-Q`Z*Z_y4adQDs7U)C38`!fEG18x~vIevnz*8$m?Gr ze9C)g?`_NVdaLa7!G^wf=_h%#HO_)Yl=_Ej=CyAY?t@;z)6=(%ecWYv46$9&HAOd( zaE;ch69AFFK+vdP-v-c_>QARh2td@KTEL1pCBM+jbT=h+<_0<|CPOq4(L$LmA=_8FE|kE$Hzg%VrFH?>j!=n%%hm3)_P@w^~m+@ zDAg6G$ot7WGCyuL%I#0dF{Uf=rfy_vCdXZ#*?#lQ@ioL7W$@S;gy@Zq<9DfZ_ksUs zCjcII<&}#aD4WbU96h}TX>^fY&W_RVcv~~7RWr`LR_7#4-{`<~{9PMN8t&u0h2=8s zw+p2Sdz(KGj)dTuqJ1w6bE~g3>eE=P=8gc3?$&EG1U@Wx-yfgZ9USZyjdHAp+ z3{OJaVp&pk_Zc{|aU3yLmQx}tfnG1D@=d>j!~-FEV35|IdW%jRGwr>mj@*6V^9s#H z5mtbTU+_lhES=xv!-Q4X#V-tK+9<{DKlY0?(OI#ZxEJC1;H6WOXZ>pj^xlaE{5S#U z2cJdy?H6HC^)yn}9GjOhkBrJ|q(G~Q&~2dIx;xa?z5D?FEG+P?Zzb+h+o`PqaqH@i zORzqk#XIup2`7%-f}MrOTKGgU zx>_amDS#nJd$M@+okjw$^w-P-O9UUH|zx(;XOZ6sL&MreY41(S@+r67lH1-Iq+tF7n**RsJQI8H#)wj@8;CC zUV4RM2}+!S=U;Uk15Gt5u>ece7F;0gj}vsI=dRMucZe(pUv=SZQ_c)~Wu!y53_OTw z6j_V9+I=3U7f|zt=6QP=M#}p<*z#UYT?RGxI{MZ(Mze8Fs!X4=kcsVYO8I# z4NKpSk5L4l}q^0znJFxA(iqNFSCHWxw737 zC-Uy-a!%&V?6b$|iusdrhmW+s+-M(@t z_1HlJ{r(HMQ*s1YsQ^>&`_tYJK~KT@roAO|g}eND+Y1x|MRY3*k4)RPW2)-PYhi&P0~5Wc>;Ux&{&P_x;_M29P4r9Q=|>Ufh%Pl3XR9fmd{t zf^}X(Xt%t$m$X4-c1}L4@ZeiW;9Alq$U=hM30>_A3qKrx>_IoPta@E~pn2&@Q%eC_ zU1y^D_|UhZFGDYaU}98sOK)=)XRcnjJoqGB{z60^Byjp^F>|T1y;oAX7qaJ-@l_In02fBPD0bA zjj;DV@aLEuK2p?FOQ2(T!l`)nB9R}~pyvBAt$dhz?Yr$C-)-=nujxF|V-YeTvM4@em`HIum;=)5Zj&-J>VK>S&eFRLD523!v zJAXntu{6jB5GH;9GcEHE3Q}pw+MpQ+w%URvlgi{$*6v%H>eEAoWrmcPlrgnMBm1gY@9h_1MH#4f-m{fc=O0hyMGv zu*X7q=B^k&&~U?Vi%jycw$4)7H;|kDQuwH~kvtPYO)g7uW1cn-#q{^2G>7WVY0N`O zwEFJ!uj~1&%{xFuGGP4cL9A5#K4!bM$Um3>v~Gf9epV2;_oJ`B_{c_oa($njCj zofqX;U;Fr&v8iI2Gj<0Q&iKoSAuz#%dPS>_O++anv>8nRIfJlIjX z>~yFb=I(_11a8*b)isOqJxK4gsL{fCYJj?FmS=K5&Rc=G3r|Yr!wx3h^8(4o`@Hps z3-_r?D{U6yVVNZ2*no!Mgp-Y>X~zpna7kn`wZlw4>ywJ=i&s8|S)JcF_m`TOOBNxE zzfmz1G0YvBDwSIOt&%(2LzKYvy0d7vZ@qs+@^p&R?&gRjZl%g>rkLYJmFQy9vD>GF z37%H=`3Ya$S;Ud7XA~={Si6}ErW>NHJ!K69X3A8%Gx+UTB9Yb_EN=CUNoGq-#hYZg zeVbu%-m_Yl=2^aiM1P@COK#Q{(vtu6$evr?hR=1q)ULG+9)ZIq+6&}X6V_&O!zO@n z6Im*Mo2oy*Pi9|@yAGEXNzQKNU4kQQpD^M55ry{r0 zslx`ACXD%BOR922Cf;o7d{>utq(0SbiN^;aC(z7L7)EE1d|7^obyjKj*-cMI^kb?P zUMz(Sn#_4jdI;7Sg6^}ijiHr{Vc&hKBF)WWRMEl~3~%jXC7fhQ3;;<7AO3lbGp;Qv zZ79uQSv`AhUre%xb$8Y0PP!7marJV6fM%L_IHOOfh=I$dB#)t-Cm*nI5b$2p11o&a zHFv{nu5~UdeK>Dmc)Mk5VywpR_sgcsO$5jyZ8r#1->D1b=B@9-E|qt@AR}s~AN0xl zDwS_Aa6VuoNUeqQch}vCJHip_UR+b$72dh2Jhv@z=3zq0$w0`K#qmqm#hl5Q0VF|g1^9%_R-pb{S?(-z8SSng>1xE{` z=F*pFEv3p7vzekzB1H~i!I^vm+q%w`5RQDTKuG2O&O1FJ6`DX5cf@Ot_0g-^h6^`` zr|1ego3`b0YPs1sKszWMzftfGVS z{;9Rj#N@A5JA^CWo4kY46SyDG7Ypy3Va){gXJZAMwLo0AU6$=NbA#F7Bvr$f;G`>s zD{Y=`Tp?+t0<)1)t~JqJx5%eEf}z zfpG3-(hy13J!L4Vc2b3Qv9WzW_qv+_|H`^)nhtld%2{8BcpZE4H9PvBK~SP}V?{A` zBA0x%ujWvy^QeOCbc3P`!}rjNGpskh#i4kq=;dKa&A~4vi+hD3IcfNUQYlw1n(F?5-*H7WG5~bZqGFAR2^PLY( zUy6HO8PZ(F9qs)0>{D(S^P>^ThJlaai#Rg;O!8b2UNAyAs_YOYH-|d%q zd_%vdh>uhMMtIdTk@LM=OuaHQD0p?>B~5xIKr6GvLtqXOO`A$$rS9}R*5(1S)S%Gi zYx4voBZhT_e$|# zq1a*pco}(0@`yR6tU1(vBQ0R^4(?nJGM(UR6g*xRJ+BCdZRDxs$yzU8w~RYCB$6q< zi}S0mw1gXCxJ9Wg5gmnDxQ5i7+5?9zKm3i~o};OV52Gf5u5yZX3Y}Oz! z!Ev|!(VPcqm0*Gxw6ug7p}AZdtazzT9R-f?UFBhH%gIcYyQVxze>o>NU78Dfzx+NS zYX)<)lWy6(VD2bCw??yU`kTuU(^{W`N;;#v#P!KwId?%R-_qgps_myarFZbJel;_u zE9B5Dv3JL}Ch(;$Z7tPu{n1oq$y19-Mbj32ABtN)7ZAhhmv4}kY>Ve~UxbO*7gNn9 zE(0UJiDMJ-Cf0+a-T>=wJ+mV~Ih&g+lhCcGU}7WyNHkPiMbA*uCVn6YYe-w1!M>uNBz@8DSkh z@9W65bZ%!P$~)*A@^F8(hge%~)iTs4ygTh&{kJjH-A!8+5B@BbxA8s#gDZS!(E6$2 zmVe9w&tzfWInv;kQd28fPq+GL#PL+&6&qsrmPVZ5`Y8p-mo&$D`B`9!@ANY&9xlk) z^4F3kvP2rm_ijTb4BjzjD|G1YgvKz*yB1kUJVm1=?-hsO4(~C?Brd35R>}*d1Ms|% zKKWLN(;+MKw^i-%Rc{yhZz}#S=;7r4^aKvGgSx!82TyO|$%cq(c6POpuX_YVF+hGk zu4J##>M}OxopU~L#7k?UN7&Cab zDrozxIClKy&O-T4QHXB<{xu!K3CG(VSoVQ1uOgNS$r4U|)U7cw`#y?QjB_#wbct7* z(Gc>N2~`nZwPO?49(&5#6z_Apm>$tZW3_>Uo_oDk@D8dz&IZq!y>h4~FDx_g?`H&e z*9_4^+y(ZhS4+J@iwo%I`i3_7iC2d4*;>ng=dX;cYo_Vg1eG*496VkDCq zY&>+rF3vZ#WFGrrD0hCowss-jU&S#CH3cP5NX4S?+<*aHk;KsF${^Ud5?fs3b|oD0 zz~BGlfyV(4+`$u-U+o>s%h=$_xrD8{Xmgq>WhkZ{Yr< z3$l`nCVM|}nmso#w8F2&BK)?xY)X1J(cyG-MIw9wZkRk!Az3Ons6ZiRWCzmw^j|9Q zo5iILs7^xd;6gyG;gUT-l2LYwvwu*BDvM+_hQCZC8LtG9_Y$il^g74q-6Z7plasX! zy9emf>N8Cr#i&*%FTIR^T}SvR&j`xz%iDUieVCKApB7XcnGm{R&Tb(XzP*+gE)d%F zBD#vK|3C)A0NGr(RXrOOr~09(^zX|cB;|+@-Yi`NM3t6+ZuhA%)17+eq*JzI{UW{S z#masorgP%geI5xhe_7o1eRR>kFihI;Gs_y)^DBKW3FkC0h)Jws-E|BXz=)H2IaA#g)#=Bx}OXIie;n zif)E^)j&=Z&U)m%QJa&#awI+{f7vFgYfHm0-nV|zrN`@BCvD+c+Fqf}rJ?B<<%N29 zjWniqoi_}SS18O((|);;P8ZCfQ@*kWcPPxspW6X&2bK&`a6x9-rAa@-&x0 zci+;cqkZiU$Z3k&uE^xhjAJjmILv*R6FG+S(OY<0i=*<5ok43qmOpgm|IC$4Ob=Wq z$@#vq^NC1RZ1M^v*n~?R>w3hm$Jqmo7H=#^ue1^hC06o(6;_Gpzm-=VD;g?1Rk0Cl$YVU z^+!Lw7m=%6@QUHDT^th!~p|VoE#3+w6Kw<=2MNyf>b%()T_r!2yr&y3T6kq*@p&e;<8Ylo45CIzvZrV%#{+EQb+<|a#m8YGAgn;B-EjrTKV(zhJ( z;7EUgts3oXJpFp0dlw|A9mih2ffp}&&x!FU_3w7b*NES1&LqxBjxB;oAq{Wn(x2|3 z4rg`U*kIIu$V{_je}2UG@MXhIao+I*)@%1O=EhAg-m~#=!m|3@)@2eEXYu`DCEEqp zds-yfI+@XbSYlt}mP-8FT_u+M|4#1~vKvy^+23(W*C@ zq@%ucD>HNnv0k{Sf$wf!D}0IHOh%@fj*5L)T%4xZWG#(KyN?lX6|hPSh=qks%$uAM zX+^SzCM%#|??+WYs?J_hq#0gP9(+YLE~o_FN?BcWZi*wf! zRR*K#AC}Eg5P?w83R;1cTn1CMhvR8aQiVImCPhD)!q{*0CTc6wuw=5zL))C$RB_BV zRx_d=fcr+IqWD!8-g~?uQQu9-cg-7K`}Uap^q!|M!6^_^Wg8X;_H0bk35(+_+4q?N zUx!jV?Zsxuv(I%Z%|eixz%&PB_N?r`o`3LKE&ck#)^4uvhaQ$qrjPpkrYzK?SqI?m znJT?l3CiO)Lm|wP>i5HVu|VGgYkV4!Ge{e01Yl4_^_}WxV6Ca#^%YSFZQmbeA+_^A zDcsvTEUqttzi9C!a=;cvw&pO^sCULJ_K{V_uTh#0TVL;QniY~1+v?+UBp|QLhgL~A z1_coF^pGEw8EN^|&WD?jtW>C7s@z4%Ha%5u&>U53(?&PzSx!Dr%jy$p`t6hcy!rpu z?z+UP;b&f!ZIG>y4aa!rUM%)@g*N)0Wg1^5Ck3-yv_CC=UT29UC0PzzNN71r+55xP zP(Cl@g9+XwCG0tQqqXU{kk{KXjGtp+?FgOyQl46v2p(dEEc{=6se3g1aYUt+{#O`jKj4kdyu7LLKj@`@F4Ee498gRt z1gGNvMk;~3W%Ap9KK|e5`X4{MlY)xDo$AN#|HI%!{K2{da#D?8)^R=u2_dh?^*8ly z=eL5?i_LHzm>CFZos++B;*vhNCr9f`SD*iW)OS8?0AeV1sK!}bgfzt*rl$jmD( zzh@lQ96UiiDrV_l*3{}~1Qe-kFGOd;pt=}w2&a?$Bqe@NiUpJc#an;b?}mhOB}!}0 zj4u7mY=Wln1N(hb6Mo&Q)ddLOdR=S(?{jPM{9vqv!+*As2f)>Hxt6sT(Jd+$U7}jA zbn=;&fC`3o3P^eV4W{jVoqWRUpBE~DD($&!1F!zu@Z@$t1eBB3qTdHKIeVg&QYHVe z+8+UM+L}=>4CDE__*UvjlhYY)SKePW?X72_W=3brwEnHCzm%cIk_ED+I^Bl?feX{< zcgmsn#c@d4t2-nVpd%7xP2_Ivxm)=^kt;P*Rts67bL4+yldL>hfYZ_+4Mlz10d;Hz zb;~6Xp%t;6)*=deJJWd6(p8QCen^l9^2WR&ECPbze^synrYst?&_#5tH}4_8&H~Y| zaLF)WQ62wD^8@$~TcTu$_77E~25J>A~nRLgMlvb$7V6b6&&cs^@0sei0*R(3*3^o0ZD3!v-f z^V6O~M_xOy2BlnHRUY1@mWSJIlanx)&>+O`-|exOac4+s3o7y29tmey)+Y}|55=j^ zgNGI+sdoUCg<@|7QZTM)cXdrR+^A>{Ob&VhYM)@Mgpp z!vxwvEC!+p28YMlLk#^{{0H+3^QVC7ELuU5oN_gEB?&6>F$JIlgWfmIe$OBjfFH{l zdE0n)vOjSX6a^_$fy>;yrA)%i@UL9+2VpS;Q5hhi&a*;;{w&F+8MnU;L1hs>I}ls1 zXvAm(4YXCLsM;pS`%Bd$nKhXg%C}Z9yF&mBvdhZbLRt+Pe)hP4?3048zvb~KmWS5? zySI@9;5oRxpn2Fb>nrr%nT~#uf0;s9k@HPy!xVoO>=ac1G?SM`SqrYlBARj(Jw*Pr z609!BQe^J-Y0h9;Dk06Y?&d3m-a!rS45~5)V_c#41D-f%O3BR8mSGTz0m2H-Jv7MO zNk?I{v`>y{fx`Muktohmh33`nzZjQ*ZeR2j4Li^DCfB$Q-!-M9T84LwCjV4$7Lnz5g=l_YoY|4;7fq0*vScz$3iTn z638208jz9}*P%#dH?b*W)5Sv}cbPoA9yAWtR-^cLvM3VPASCI!M*FU#+7LKCm}yZn zepA1-s%nu{l2mE5#TPw04;hU+;B9hcwBGu{o`9NwRSRqbm4;gottM*2VVG9G;V3Z( zP~6HMU#Bs!wB39U)2@hff$rD+1In8}$%naW6lv!{QV|8q#zSxbO(g|#1xdhMzk0t63|+6F6R z#Hb7aZH$)q=chl2*gaLd7$i3%W`xv}7Y&Wb4BZ%O&I$c}cB7(OrPx1?ANX?gJVzCy%;PwGD9@9Km3y8LnQ9Y&k# zcAFXT3)OW-k$JtaDA73|*>(zl*&{^O^9t-?U+v<;squN0x1{xoq~;Qp?%xGKw|Uu* zV_j_A5Bxs=vv09bZ`+}T=33Pzp%Y5VIN_lw=C+OTF_*5HPwd=FO_aVt6mCBH9bcx- zE6Qj92K*hwbhp`;g??D(;hDZ$wvZF=4^?5hH0M^aAm*DYY7idw_?`Jg@7 zP}!)Q@m5`@a#^Zl$8=oi;@v67bfBd-*m1<|WRANgI*(AbNrKba)D%Ng4LtynM`(gj zC-h!r73FCufHa0(#ktPglo65r!SJW~HxG<8Z9TV|Auat+XZ3fZEEyILLg5>)JEJJ0ND~oJtJ!u?uP0(`2A%hWf~IWY zxCRkBP&Q29h$h!_hFpTG)n;d65<2S?#bvPHknfGq=EN9Rsne2#dDe2L7*f^hVvDF) zoC0`#Ve?$&fm)mU!!h0&VZ6~0SxqP~+(k2l#iIOS-2q8i$h~>$`5A-DXX9o>{9!|f zQ$sse4UH?HARr(u>)w7kH;!aCL+6oV=I3mjtZxfMl-oxFyC$^gQ*^a=A^6lV0DuNW<$3jvnb1ikCiH;Cq`e-__<{_%*CK}w3^>`c zyhBO{ME=<@N8(4g;-m$Tss1$Y4J#eE*DzqS@lI*i}-3y z>coWWALDl6ELG;ac^SiLTIgzbgsn>Mk@0O(l0vC9mdPJo93{1ql7FE*Y*2Fc-IEKA z^s7Rj!T@N0JR|9JV(3hOeSn4FlJu_?_3j|B(v#HBjI#dPwz4-_z%k#vJ#E;}*(9H;>eA7duJ&jI$J8e^*6qI9ESPms#_(?gO>FoJBv z+r9~0@Z7?#Y{ZDWS52ebq48nJmY&j$@?ajH53W))QfbKajCH7ZwUMb+1GG7B{VkKW<6OmvCorlqe zmaL9UN~Krh2O{f$Geq`f5OfF+$HUo|^Mzc91}j=AH1)MFsoDaX??@PUD=USdW;bJAI3wWP;B zvnO`*2u=$<+2I(*k{4RMI_RLvM8av8#G=k=MFyOkifYIG*fv1yXFnW3zXq<4yDs2Ue~Ul;;vXM zB8-r%luy83(2{<8MnRBgB)P}tcSTHd52_yC7-~qnwFTbEENH_k1%t5^3 znLDqRl4OXht@czgOu>z0?U->^_4z<>Vf87H%>$N2+w&kyId!vxk$#&jhEA6nSiEw> zt#{B!wRy2tmXT<|_^`q8S(s@DihSAXL{1?iOkmG9^ylF+V#95@ILlqi9`|O+*rI+_ z(fyd0j+Uk6MRx)0zuJ6qMe_F=UuOwdd1OWRc+d8017wOAX3vH9U8vgt%{tyEmzqyF z1OBf<)*dzpB8bx$N{^i`rgttbbyo0DIJ16SM;KH0l9wOKt87D12K)!1qNXe57Ej+0-<8_d%@fND+4g_haYj?M8_Y5f11l`0OFzl5z3f+cE zV4J>cNnY5O7l+GcV%!{`_#AjqZ?rley}IQn80-rIe(7)Ay+Ao3)LNjWv3M(+9#lry6jif~<&$h^JKl zxbdojTVwUU&dKt=`B@5qtG83NtZZltxZ-a>HZN0JN`hKmDm}1L_a&~W!^ALCDJ399 z6|tP&Z~I~?2GQf7xF#)eZe-3_Czj8fhpjyaQDTWh4+wocl$x+b0a{mK7q!v^8H_Et zsrxDjcLf*t@gGCJodfPyolA0z@*MsY`vcq#7a7}sSGhOWJiF$WD{Zte?ni7pqU;ui zPm_t6^{5(C#C^8?4=qSWEBjABWMTo|)UJhX2c`<4Z-0M(x6|aoYJZlhzyla2EEEW> zJ#uq3O$j+{M1aMlT@s7>o~NG_S!VjhT~FNFLI9i0bE`4Pjq}YH6p-9wB|J78t8z81 z3*8EUHIz)XBNj)$Ve6vDaRcjkyuE7a!xB^q(Rm?sXInlU=p4)S-pU)RbdCZl%3QJ| z>py@9I-?1N>f{YFkSvfdOnGWqX1g|44a+P&UCEO0{^$76&G5aMnF6YQOXIS;L)SX4 zQ1{4&i;Z4&?&I6#q%;hhxsv+pcwa|O`+V~HYBuo&2nY_8++(ZEQbNAQb2i86iDlC^ zamAMNCIqxco=Z*T09V1mLx(mMX>_XFk%rFGyBkXr%IzArf|vLdr!)_eI}l|B@Yr*| z2kHsShU)rpXb^vmV@{-q= zPJ6LHE8eR7YU!k(!)RjDr6kc2Y4b@-m;gXsJUr=*SGh=6R;I!n5^>$i=mR^|7+|m3~JH1+gA!<3tWMsV2QlL{F-auYCnY8_y`j)V=rY-(ifKI1}aF@r5)fVDa z#Y5p0_n!6NA3hd9;4%NQRg_06J^rF}KnrNs3HRO`4leLx?=~;quIru|FR5}{{JSwR zd^(kimH$1J3belpw%;wDPqqK!_tau$ea>3->Lp8ZH(ULKZ-0Hp;Rql8dQ0D&IgokZ zx(wChmQoeaBCu4pvbpiRC7eOWZ5e;n#b(Yp8ER2a@sE%_Jf2dPCTcH-?}UU~r1g#z zEEL3v-7d7vkuu)8TaWqTr;vGNP+09i$j**@U8g{eN zGRnMY^Swj+fg{3Tr>mVis4AlIl};sPJ~C4`CX|aSwyONme_im`RJv)-jA}K)y&}~A zyB2rrA6{LMfAIC;MHkH+L-BEDJN+edi&7ZQWYx6NMm#RhOL(ZTUlzA=vBfm%F#p*f z^0<9z#GiX&@;XZoQ^vaHr#-)SL~zf?*+u1YQFd<6Dt(O0Z0jou79I;&N_>&?!Urzv zPu%FFSS;*K(5wdMz^E=HudHzS^5-k+)MJ7v`M)L&c#2&^y2w}Ne})9S4wtjp zQ-9GG$2jdq;j!Ha^8SE=2O1H*dgP#j)46 zDOZVR`yIf9G03*1?jb{GPvU;vSAiAi2GPDpjrPy+^Y1MAIV#4PO!{B3m3fZ;?y|pU z)&J|KnLm@=U3vf4hyGnt7r0L|!Pb~QEC1e+{_`w9e@YMm6IaOwrv2-M{a@FJcn+PL zN=$xn|ND;rd6@+EqfFxcDAa$J@c(!bYS|9VEZJN~n5KT8CI8no)Q~K!YX9FJdsR>) Xef&<%Qey!V_|nxfyk4epJM#YkC&u5E diff --git a/hacking_religion/chapter_1.qmd b/hacking_religion/chapter_1.qmd index 82ce078..2014b11 100644 --- a/hacking_religion/chapter_1.qmd +++ b/hacking_religion/chapter_1.qmd @@ -126,6 +126,9 @@ If you're looking closely, you will notice that I've added two elements to our p If you inspect our chart, you can see that we're getting closer, but it's not really that helpful to compare the totals. What we need to do is get percentages that can be compared side by side. This is easy to do using another `dplyr` feature `mutate`: +[It's worth noting that an alternative approach is to leave the numbers intact and simply label them differently so they render as percentages on your charts. You can do this with the `scales() library and the label_percent() function. The downside of this approach is that it won't transfer to tables if you make them.]{.aside} + + ```{r} uk_census_2021_religion_totals <- uk_census_2021_religion_totals %>% dplyr::mutate(perc = scales::percent(value / sum(value), accuracy = 0.1, trim = FALSE)) # <3> @@ -158,7 +161,11 @@ ggplot(uk_census_2021_religion_merged, aes(fill=fct_reorder(dataset, value), x=r ``` ## Is your chart accurate? Telling the truth in data science -There is some technical work yet to be done fine-tuning the visualisation of our chart here. But I'd like to pause for a moment and consider an ethical question. Is the title of this chart truthful and accurate? On one hand, it is a straight-forward reference to the nature of the question asked on the 2021 census survey instrument. However, as you will see in the next chapter, large data sets from the same year which asked a fairly similar question yield different results. Part of this could be attributed to the amount of non-respose to this specific question which, in the 2021 census is between 5-6% across many demographics. It's possible (though perhaps unlikely) that all those non-responses were Sikh respondents who felt uncomfortable identifying themselves on such a survey. If even half of the non-responses were of this nature, this would dramatically shift the results especially in comparison to other minority groups. So there is some work for us to do here in representing non-response as a category on the census. But it's equally possible that someone might feel uncertain when answering, but nonetheless land on a particular decision marking "Christian" when they wondered if they should instead tick "no religion. Some surveys attempt to capture uncertainty in this way, asking respondents to mark how confident they are about their answers, but the census hasn't capture this so we simply don't know. If a large portion of respondents in the "Christian" category were hovering between this and another response, again, they might shift their answers when responding on a different day, perhaps having just had a conversation with a friend which shifted their thinking. Even the inertia of survey design can have an effect on this, so responding to other questions in a particular way, thinking about ethnic identity, for example, can prime a person to think about their religious identity in a different or more focussed way, altering their response to the question. For this reason, some survey instruments randomise the order of questions. This hasn't been done on the census (which would have been quite hard work given that most of the instruments were printed hard copies!), so again, we can't really be sure if those answers given are stable. Finally, researchers have also found that when people are asked to mark their religious affiliation, sometimes they can prefer to mark more than one answer. A person might consider themselves to be "Muslim" but also "Spiritual but not religious" preferring the combination of those identities. It is also the case that respondents can identify with more unexpected hybrid religious identities, such as "Christian" and "Hindu". The census only allows respondents to tick a single box for the religion category. It is worth noting that, in contrast, the responses for ethnicity allow for combinations. Given that this is the case, it's impossible to know which way a person went at the fork in the road as they were forced to choose just one half of this kind of hybrid identity. Finally, it is interesting to wonder exactly what it means for a person when they tick a box like this. Is it because they attend synagogue on a weekly basis? Some persons would consider weekly attendance at workship a prerequisite for membership in a group, but others would not. Indeed we can infer from surveys and research which aims to track rates of participation in weekly worship that many people who tick boxes for particular religious identities on the census have never attended a worship service at all. +There is some technical work yet to be done fine-tuning the visualisation of our chart here. But I'd like to pause for a moment and consider an ethical question. Is the title of this chart truthful and accurate? On one hand, it is a straight-forward reference to the nature of the question asked on the 2021 census survey instrument. However, as you will see in the next chapter, large data sets from the same year which asked a fairly similar question yield different results. Part of this could be attributed to the amount of non-respose to this specific question which, in the 2021 census is between 5-6% across many demographics. It's possible (though perhaps unlikely) that all those non-responses were Sikh respondents who felt uncomfortable identifying themselves on such a survey. If even half of the non-responses were of this nature, this would dramatically shift the results especially in comparison to other minority groups. So there is some work for us to do here in representing non-response as a category on the census. + +It's equally possible that someone might feel uncertain when answering, but nonetheless land on a particular decision marking "Christian" when they wondered if they should instead tick "no religion. Some surveys attempt to capture uncertainty in this way, asking respondents to mark how confident they are about their answers, but the census hasn't capture this so we simply don't know. If a large portion of respondents in the "Christian" category were hovering between this and another response, again, they might shift their answers when responding on a different day, perhaps having just had a conversation with a friend which shifted their thinking. Even the inertia of survey design can have an effect on this, so responding to other questions in a particular way, thinking about ethnic identity, for example, can prime a person to think about their religious identity in a different or more focussed way, altering their response to the question. For this reason, some survey instruments randomise the order of questions. This hasn't been done on the census (which would have been quite hard work given that most of the instruments were printed hard copies!), so again, we can't really be sure if those answers given are stable. + +Finally, researchers have also found that when people are asked to mark their religious affiliation, sometimes they can prefer to mark more than one answer. A person might consider themselves to be "Muslim" but also "Spiritual but not religious" preferring the combination of those identities. It is also the case that respondents can identify with more unexpected hybrid religious identities, such as "Christian" and "Hindu". The census only allows respondents to tick a single box for the religion category. It is worth noting that, in contrast, the responses for ethnicity allow for combinations. Given that this is the case, it's impossible to know which way a person went at the fork in the road as they were forced to choose just one half of this kind of hybrid identity. Finally, it is interesting to wonder exactly what it means for a person when they tick a box like this. Is it because they attend synagogue on a weekly basis? Some persons would consider weekly attendance at workship a prerequisite for membership in a group, but others would not. Indeed we can infer from surveys and research which aims to track rates of participation in weekly worship that many people who tick boxes for particular religious identities on the census have never attended a worship service at all. What does this mean for our results? Are they completely unreliable and invalid? I don't think this is the case or that taking a clear-eyed look at the force and stability of our underlying data should be cause for despair. Instead, the most appropriate response is humility. Someone has made a statement which is recorded in the census, of this we can be sure. They felt it to be an accurate response on some level based on the information they had at the time. And with regard to the census, it is a massive, almost completely population level, sample so there is additional validity there. The easiest way to represent all this reality in the form of speaking truthfully about our data is to acknowledge that however valid it may seem, it is nonetheless a snapshot. For this reason, I would always advise that the best title for a chart is one which specifies the data set. We should also probably do something different with those non-responses: @@ -184,14 +191,27 @@ Let's take a moment to review our hacker code. I've just spent some time address One element of R data analysis that can get really interesting is working with multiple variables. Above we've looked at the breakdown of religious affiliation across the whole of England and Wales (Scotland operates an independent census), and by placing this data alongside a specific region, we've already made a basic entry into working with multiple variables but this can get much more interesting. Adding an additional quantative variable (also known as bivariate data) into the mix, however can also generate a lot more information and we have to think about visualising it in different ways which can still communicate with visual clarity in spite of the additional visual noise which is inevitable with enhanced complexity. Let's have a look at the way that religion in England and Wales breaks down by ethnicity. -```{r} -library(nomisr) +::: {.callout-tip} +## What is Nomis? +For the UK, census data is made available for programmatic research like this via an organisation called NOMIS. Luckily for us, there is an R library you can use to access nomis directly which greatly simplifies the process of pulling data down from the platform. It's worth noting that if you're not in the UK, there are similar options for other countries. Nearly every R textbook I've ever seen works with USA census data, so you'll find plenty of documentation available on the tools you can use for US Census data. Similarly for the EU, Canada, Austrailia etc. + +Here's the process to identify a dataset within the nomis platform: + +```{r} # Process to explore nomis() data for specific datasets +library(nomisr) religion_search <- nomis_search(name = "*Religion*") -religion_measures <- nomis_get_metadata("NM_529_1", "measures") +religion_measures <- nomis_get_metadata("ST104", "measures") tibble::glimpse(religion_measures) religion_geography <- nomis_get_metadata("NM_529_1", "geography", "TYPE") +``` + +::: + + +```{r} +library(nomisr) # Get table of Census 2011 religion data from nomis z <- nomis_get_data(id = "NM_529_1", time = "latest", geography = "TYPE499", measures=c(20301)) @@ -201,46 +221,151 @@ uk_census_2011_religion <- filter(z, GEOGRAPHY_NAME=="England and Wales" & RURAL uk_census_2011_religion <- select(uk_census_2011_religion, C_RELPUK11_NAME, OBS_VALUE) # Plot results plot1 <- ggplot(uk_census_2011_religion, aes(x = C_RELPUK11_NAME, y = OBS_VALUE)) + geom_bar(stat = "identity") + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) -ggsave(filename = "plot.png", plot = plot1) +# ggsave(filename = "plot.png", plot = plot1) + +# grab daata from nomis for 2001 census religion / ethnicity + +z0 <- nomis_get_data(id = "NM_1872_1", time = "latest", geography = "TYPE499", measures=c(20100)) +# select relevant columns +uk_census_2001_religion_ethnicity <- select(z0, GEOGRAPHY_NAME, C_RELPUK11_NAME, C_ETHHUK11_NAME, OBS_VALUE) +# Filter down to simplified dataset with England / Wales and percentages without totals +uk_census_2001_religion_ethnicity <- filter(uk_census_2001_religion_ethnicity, GEOGRAPHY_NAME=="England and Wales" & C_RELPUK11_NAME != "All categories: Religion") +# Simplify data to only include general totals and omit subcategories +uk_census_2001_religion_ethnicity <- uk_census_2001_religion_ethnicity %>% filter(grepl('Total', C_ETHHUK11_NAME)) # grab data from nomis for 2011 census religion / ethnicity table z1 <- nomis_get_data(id = "NM_659_1", time = "latest", geography = "TYPE499", measures=c(20100)) # select relevant columns -uk_census_2011_religion_ethnicitity <- select(z1, GEOGRAPHY_NAME, C_RELPUK11_NAME, C_ETHPUK11_NAME, OBS_VALUE) +uk_census_2011_religion_ethnicity <- select(z1, GEOGRAPHY_NAME, C_RELPUK11_NAME, C_ETHPUK11_NAME, OBS_VALUE) # Filter down to simplified dataset with England / Wales and percentages without totals -uk_census_2011_religion_ethnicitity <- filter(uk_census_2011_religion_ethnicitity, GEOGRAPHY_NAME=="England and Wales" & C_RELPUK11_NAME != "All categories: Religion" & C_ETHPUK11_NAME != "All categories: Ethnic group") +uk_census_2011_religion_ethnicity <- filter(uk_census_2011_religion_ethnicity, GEOGRAPHY_NAME=="England and Wales" & C_RELPUK11_NAME != "All categories: Religion" & C_ETHPUK11_NAME != "All categories: Ethnic group") # Simplify data to only include general totals and omit subcategories -uk_census_2011_religion_ethnicitity <- uk_census_2011_religion_ethnicitity %>% filter(grepl('Total', C_ETHPUK11_NAME)) +uk_census_2011_religion_ethnicity <- uk_census_2011_religion_ethnicity %>% filter(grepl('Total', C_ETHPUK11_NAME)) -ggplot(uk_census_2011_religion_ethnicitity, aes(fill=C_ETHPUK11_NAME, x=C_RELPUK11_NAME, y=OBS_VALUE)) + geom_bar(position="dodge", stat ="identity", colour = "black") + scale_fill_brewer(palette = "Set1") + ggtitle("Religious Affiliation in the 2021 Census of England and Wales") + xlab("") + ylab("") + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +# grab data from nomis for 2021 census religion / ethnicity table +z2 <- nomis_get_data(id = "NM_2131_1", time = "latest", geography = "TYPE499", measures=c(20100)) +# select relevant columns +uk_census_2021_religion_ethnicity <- select(z2, GEOGRAPHY_NAME, C2021_RELIGION_10_NAME, C2021_ETH_8_NAME, OBS_VALUE) +# Filter down to simplified dataset with England / Wales and percentages without totals +uk_census_2021_religion_ethnicity <- filter(uk_census_2021_religion_ethnicity, GEOGRAPHY_NAME=="England and Wales" & C2021_RELIGION_10_NAME != "Total" & C2021_ETH_8_NAME != "Total") +# 2021 census includes white sub-groups so we need to omit those so we just have totals: +uk_census_2021_religion_ethnicity <- filter(uk_census_2021_religion_ethnicity, C2021_ETH_8_NAME != "White: English, Welsh, Scottish, Northern Irish or British" & C2021_ETH_8_NAME != "White: Irish" & C2021_ETH_8_NAME != "White: Gypsy or Irish Traveller, Roma or Other White") + +ggplot(uk_census_2011_religion_ethnicity, aes(fill=C_ETHPUK11_NAME, x=C_RELPUK11_NAME, y=OBS_VALUE)) + geom_bar(position="dodge", stat ="identity", colour = "black") + scale_fill_brewer(palette = "Set1") + ggtitle("Religious Affiliation in the 2021 Census of England and Wales") + xlab("") + ylab("") + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) ``` The trouble with using grouped bars here, as you can see, is that there are quite sharp disparities which make it hard to compare in meaningful ways. We could use logarithmic rather than linear scaling as an option, but this is hard for many general public audiences to apprecaite without guidance. One alternative quick fix is to extract data from "white" respondents which can then be placed in a separate chart with a different scale. ```{r} # Filter down to simplified dataset with England / Wales and percentages without totals -uk_census_2011_religion_ethnicitity_white <- filter(uk_census_2011_religion_ethnicitity, C_ETHPUK11_NAME == "White: Total") -uk_census_2011_religion_ethnicitity_nonwhite <- filter(uk_census_2011_religion_ethnicitity, C_ETHPUK11_NAME != "White: Total") +uk_census_2011_religion_ethnicity_white <- filter(uk_census_2011_religion_ethnicity, C_ETHPUK11_NAME == "White: Total") +uk_census_2011_religion_ethnicity_nonwhite <- filter(uk_census_2011_religion_ethnicity, C_ETHPUK11_NAME != "White: Total") -ggplot(uk_census_2011_religion_ethnicitity_nonwhite, aes(fill=C_ETHPUK11_NAME, x=C_RELPUK11_NAME, y=OBS_VALUE)) + geom_bar(position="dodge", stat ="identity", colour = "black") + scale_fill_brewer(palette = "Set1") + ggtitle("Religious Affiliation in the 2021 Census of England and Wales") + xlab("") + ylab("") + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +ggplot(uk_census_2011_religion_ethnicity_nonwhite, aes(fill=C_ETHPUK11_NAME, x=C_RELPUK11_NAME, y=OBS_VALUE)) + geom_bar(position="dodge", stat ="identity", colour = "black") + scale_fill_brewer(palette = "Set1") + ggtitle("Religious Affiliation in the 2021 Census of England and Wales") + xlab("") + ylab("") + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) ``` This still doesn't quite render with as much visual clarity and communication as I'd like. For a better look, we can use a technique in R called "faceting" to create a series of small charts which can be viewed alongside one another. ```{r} -ggplot(uk_census_2011_religion_ethnicitity_nonwhite, aes(x=C_RELPUK11_NAME, y=OBS_VALUE)) + geom_bar(position="dodge", stat ="identity", colour = "black") + facet_wrap(~C_ETHPUK11_NAME, ncol = 2) + scale_fill_brewer(palette = "Set1") + ggtitle("Religious Affiliation in the 2011 Census of England and Wales") + xlab("") + ylab("") + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +ggplot(uk_census_2011_religion_ethnicity_nonwhite, aes(x=C_RELPUK11_NAME, y=OBS_VALUE)) + geom_bar(position="dodge", stat ="identity", colour = "black") + facet_wrap(~C_ETHPUK11_NAME, ncol = 2) + scale_fill_brewer(palette = "Set1") + ggtitle("Religious Affiliation in the 2011 Census of England and Wales") + xlab("") + ylab("") + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) ``` +For our finale chart, I'd like to take the faceted chart we've just done, and add in totals for the previous two census years (2001 and 2011) so we can see how trends are changing in terms of religious affiliation within ethnic self-identification categories. We'll draw on some techniques we're already developed above using `rbind()` to connect up each of these charts (after we've added a column identifying each chart by the census year). We will also need to use one new technique to change the wording of ethnic categories as this isn't consistent from one census to the next and ggplot will struggle to chart things if the terms being used are exactly the same. We'll use `mutate()` again to accomplish this with some slightly different code. - +```{r} +# First add column to each dataframe so we don't lose track of the census it comes from: +uk_census_2001_religion_ethnicity$dataset <- c("2001") +uk_census_2011_religion_ethnicity$dataset <- c("2011") +uk_census_2021_religion_ethnicity$dataset <- c("2021") +# Let's tidy the names of each column: +names(uk_census_2001_religion_ethnicity) <- c("Geography", "Religion", "Ethnicity", "Value", "Year") +names(uk_census_2011_religion_ethnicity) <- c("Geography", "Religion", "Ethnicity", "Value", "Year") +names(uk_census_2021_religion_ethnicity) <- c("Geography", "Religion", "Ethnicity", "Value", "Year") +# Next we need to change the terms using mutate() +uk_census_2001_religion_ethnicity <- uk_census_2001_religion_ethnicity %>% + mutate(Ethnicity = str_replace_all(Ethnicity, + pattern = "^White: Total$", replacement = "White")) %>% + mutate(Ethnicity = str_replace_all(Ethnicity, + pattern = "^Mixed: Total$", replacement = "Mixed")) %>% + mutate(Ethnicity = str_replace_all(Ethnicity, + pattern = "^Asian: Total$", replacement = "Asian")) %>% + mutate(Ethnicity = str_replace_all(Ethnicity, + pattern = "^Black or Black British: Total$", replacement = "Black")) %>% + mutate(Ethnicity = str_replace_all(Ethnicity, + pattern = "^Chinese or Other ethnic group: Total$", replacement = "Other")) + +uk_census_2011_religion_ethnicity <- uk_census_2011_religion_ethnicity %>% + mutate(Ethnicity = str_replace_all(Ethnicity, + pattern = "^White: Total$", replacement = "White")) %>% + mutate(Ethnicity = str_replace_all(Ethnicity, + pattern = "^Mixed/multiple ethnic group: Total$", replacement = "Mixed")) %>% + mutate(Ethnicity = str_replace_all(Ethnicity, + pattern = "^Asian/Asian British: Total$", replacement = "Asian")) %>% + mutate(Ethnicity = str_replace_all(Ethnicity, + pattern = "^Black/African/Caribbean/Black British: Total$", replacement = "Black")) %>% + mutate(Ethnicity = str_replace_all(Ethnicity, + pattern = "^Other ethnic group: Total$", replacement = "Other")) +uk_census_2021_religion_ethnicity <- uk_census_2021_religion_ethnicity %>% + mutate(Ethnicity = str_replace_all(Ethnicity, + pattern = "^White: Total$", replacement = "White")) %>% + mutate(Ethnicity = str_replace_all(Ethnicity, + pattern = "^Mixed or Multiple ethnic groups$", replacement = "Mixed")) %>% + mutate(Ethnicity = str_replace_all(Ethnicity, + pattern = "^Asian, Asian British or Asian Welsh$", replacement = "Asian")) %>% + mutate(Ethnicity = str_replace_all(Ethnicity, + pattern = "^Black, Black British, Black Welsh, Caribbean or African$", replacement = "Black")) %>% + mutate(Ethnicity = str_replace_all(Ethnicity, + pattern = "^Other ethnic group$", replacement = "Other")) +# Now let's merge the tables: + +uk_census_merged_religion_ethnicity <- rbind(uk_census_2021_religion_ethnicity, uk_census_2011_religion_ethnicity) + +uk_census_merged_religion_ethnicity <- rbind(uk_census_merged_religion_ethnicity, uk_census_2001_religion_ethnicity) + +# As above, we'll split out non-white and white: + +uk_census_merged_religion_ethnicity_nonwhite <- filter(uk_census_merged_religion_ethnicity, Ethnicity != "White") + +# Time to plot! + +ggplot(uk_census_merged_religion_ethnicity_nonwhite, aes(fill=Year, x=Religion, y=Value)) + geom_bar(position="dodge", stat ="identity", colour = "black") + facet_wrap(~Ethnicity, ncol = 2) + scale_fill_brewer(palette = "Set1") + ggtitle("Religious Affiliation in the 2001-2021 Census of England and Wales") + xlab("") + ylab("") + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +``` + +There are a few formatting issues which remain. Our y-axis number labels are in scientific format which isn't really very easy to read. You can use the very powerful and flexible `scales()` library to bring in some more readable formatting of numbers in a variety of places in R including in ggplot visualizations. + +```{r} +library(scales) +ggplot(uk_census_merged_religion_ethnicity_nonwhite, aes(fill=Year, x=Religion, y=Value)) + geom_bar(position="dodge", stat ="identity", colour = "black") + facet_wrap(~Ethnicity, ncol = 2) + scale_fill_brewer(palette = "Set1") + scale_y_continuous(labels = unit_format(unit = "M", scale = 1e-6), breaks = breaks_extended(8)) + ggtitle("Religious Affiliation in the 2001-2021 Census of England and Wales") + xlab("") + ylab("") + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) + +# https://ggplot2-book.org/scales-position#sec-position-continuous-breaks + +``` +This chart shows an increase in almost every category, though it's a bit hard to read in some cases. However, this information is based on the increase in raw numbers. It's possbile that numbers may be going up, but in some cases the percentage share for a particular category has actually gone down. Let's transform and visualise our data as percentages to see what kind of trends we can actually isolate: + +```{r} +uk_census_merged_religion_ethnicity <- uk_census_merged_religion_ethnicity %>% + group_by(Ethnicity, Year) %>% + dplyr::mutate(Percent = Value/sum(Value)) + +ggplot(uk_census_merged_religion_ethnicity, aes(fill=Year, x=Religion, y=Percent)) + geom_bar(position="dodge", stat ="identity", colour = "black") + facet_wrap(~Ethnicity, scales="free_x") + scale_fill_brewer(palette = "Set1") + scale_y_continuous(labels = scales::percent) + ggtitle("Religious Affiliation in the 2001-2021 Census of England and Wales") + xlab("") + ylab("") + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +``` +Now you can see why this shift is important - the visualisation tells a completely different story in some cases across the two different charts. In the first, working off raw numbers we see a net increase in Christianity across all categories. But if we take into account the fact that the overall share of population is growing for each of these groups, their actual composition is changing in a different direction. The proportion of each group is declining across the three census periods (albeit with an exception for the "Other" category from 2011 to 2021). + +To highlight a few features of this final plot, I've used a specific feature within `facet_wrap` `scales = "free_x"` to let each of the individual facets adjust the total range on the x-axis. Since we're looking at trends here and not absolute values, having correspondence across scales isn't important and this makes for something a bit more visually tidy. I've also shifted the code for `scale_y_continuous` to render values as percentages (rather than millions). + +In case you want to print this plot out and hang it on your wall, you can use the ggsave tool to render the chart as an image file: + +```{r} +plot1 <- ggplot(uk_census_merged_religion_ethnicity, aes(fill=Year, x=Religion, y=Percent)) + geom_bar(position="dodge", stat ="identity", colour = "black") + facet_wrap(~Ethnicity, scales="free_x") + scale_fill_brewer(palette = "Set1") + scale_y_continuous(labels = scales::percent) + ggtitle("Religious Affiliation in the 2001-2021 Census of England and Wales") + xlab("") + ylab("") + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) + +ggsave("chart.png", plot=plot1, width = 8, height = 10, units=c("in")) +``` # References {.unnumbered} diff --git a/hacking_religion/chapter_2.qmd b/hacking_religion/chapter_2.qmd index c6783ed..2f98351 100644 --- a/hacking_religion/chapter_2.qmd +++ b/hacking_religion/chapter_2.qmd @@ -97,10 +97,28 @@ ggplot(religious_affiliation_sums, aes(x = n, y = response)) + ## make labels left-aligned and white hjust = 1, nudge_x = -.5, colour = "white", size=3) ``` +I've added one feature to our chart that wasn't in the bar charts in chapter 1, text labels with the actual value on each bar. +You may be thinking about the plots we've just finished in chapter 1 and wondering how they compare. Let's use the same facet approach that we've just used to render this data in a subsetted way. +```{r} +# First we need to add in data on ethnic self-identification from our respondents: +df <- select(climate_experience_data, Q56, Q0) +religious_affiliation_ethnicity <- as_tibble(as_factor(df)) +names(religious_affiliation_ethnicity) <- c("Religion", "Ethnicity") + +religious_affiliation_ethnicity_sums <- religious_affiliation_ethnicity %>% + group_by(Ethnicity) %>% + dplyr::count(Religion, sort = TRUE) %>% # <1> + dplyr::mutate(Religion = forcats::fct_rev(forcats::fct_inorder(Religion))) + +plot1 <- ggplot(religious_affiliation_ethnicity_sums, aes(x = n, y = Religion)) + + geom_col(colour = "white") + facet_wrap(~Ethnicity, scales="free_x") + +ggsave("chart.png", plot=plot1, width = 8, height = 10, units=c("in")) + +``` -Add colours Use mutate to put "prefer not to say" at the bottom # Info here: https://r4ds.had.co.nz/factors.html#modifying-factor-levels