hacking_religion_textbook/docs/chapter_1.html

1513 lines
138 KiB
HTML
Raw Normal View History

2023-10-02 10:52:45 +00:00
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
<meta charset="utf-8">
<meta name="generator" content="quarto-1.4.551">
2023-10-02 10:52:45 +00:00
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes">
2024-02-15 12:36:03 +00:00
<title>Hacking Religion: TRS &amp; Data Science in Action - 1&nbsp; Set up local workspace:</title>
2023-10-02 10:52:45 +00:00
<style>
code{white-space: pre-wrap;}
span.smallcaps{font-variant: small-caps;}
div.columns{display: flex; gap: min(4vw, 1.5em);}
div.column{flex: auto; overflow-x: auto;}
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
ul.task-list{list-style: none;}
ul.task-list li input[type="checkbox"] {
width: 0.8em;
margin: 0 0.8em 0.2em -1em; /* quarto-specific, see https://github.com/quarto-dev/quarto-cli/issues/4556 */
vertical-align: middle;
}
/* CSS for syntax highlighting */
pre > code.sourceCode { white-space: pre; position: relative; }
2024-02-13 14:28:18 +00:00
pre > code.sourceCode > span { line-height: 1.25; }
2023-10-02 10:52:45 +00:00
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
div.sourceCode { margin: 1em 0; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
}
pre.numberSource { margin-left: 3em; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
/* CSS for citations */
div.csl-bib-body { }
div.csl-entry {
clear: both;
}
.hanging-indent div.csl-entry {
margin-left:2em;
text-indent:-2em;
}
div.csl-left-margin {
min-width:2em;
float:left;
}
div.csl-right-inline {
margin-left:2em;
padding-left:1em;
}
div.csl-indent {
margin-left: 2em;
}</style>
<script src="site_libs/quarto-nav/quarto-nav.js"></script>
<script src="site_libs/quarto-nav/headroom.min.js"></script>
<script src="site_libs/clipboard/clipboard.min.js"></script>
<script src="site_libs/quarto-search/autocomplete.umd.js"></script>
<script src="site_libs/quarto-search/fuse.min.js"></script>
<script src="site_libs/quarto-search/quarto-search.js"></script>
<meta name="quarto:offset" content="./">
<link href="./chapter_2.html" rel="next">
2023-10-12 17:50:44 +00:00
<link href="./index.html" rel="prev">
2023-10-02 10:52:45 +00:00
<script src="site_libs/quarto-html/quarto.js"></script>
<script src="site_libs/quarto-html/popper.min.js"></script>
<script src="site_libs/quarto-html/tippy.umd.min.js"></script>
<script src="site_libs/quarto-html/anchor.min.js"></script>
<link href="site_libs/quarto-html/tippy.css" rel="stylesheet">
<link href="site_libs/quarto-html/quarto-syntax-highlighting.css" rel="stylesheet" id="quarto-text-highlighting-styles">
<script src="site_libs/bootstrap/bootstrap.min.js"></script>
<link href="site_libs/bootstrap/bootstrap-icons.css" rel="stylesheet">
<link href="site_libs/bootstrap/bootstrap.min.css" rel="stylesheet" id="quarto-bootstrap" data-mode="light">
<script id="quarto-search-options" type="application/json">{
"location": "sidebar",
"copy-button": false,
"collapse-after": 3,
"panel-placement": "start",
"type": "textbox",
2024-02-13 14:28:18 +00:00
"limit": 50,
"keyboard-shortcut": [
"f",
"/",
"s"
],
"show-item-context": false,
2023-10-02 10:52:45 +00:00
"language": {
"search-no-results-text": "No results",
"search-matching-documents-text": "matching documents",
"search-copy-link-title": "Copy link to search",
"search-hide-matches-text": "Hide additional matches",
"search-more-match-text": "more match in this document",
"search-more-matches-text": "more matches in this document",
"search-clear-button-title": "Clear",
2024-02-13 14:28:18 +00:00
"search-text-placeholder": "",
2023-10-02 10:52:45 +00:00
"search-detached-cancel-button-title": "Cancel",
"search-submit-button-title": "Submit",
"search-label": "Search"
}
}</script>
</head>
<body class="nav-sidebar floating slimcontent">
<div id="quarto-search-results"></div>
<header id="quarto-header" class="headroom fixed-top">
<nav class="quarto-secondary-nav">
<div class="container-fluid d-flex">
2024-02-13 14:28:18 +00:00
<button type="button" class="quarto-btn-toggle btn" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
2023-10-02 10:52:45 +00:00
<i class="bi bi-layout-text-sidebar-reverse"></i>
</button>
2024-02-15 12:36:03 +00:00
<nav class="quarto-page-breadcrumbs" aria-label="breadcrumb"><ol class="breadcrumb"><li class="breadcrumb-item"><a href="./chapter_1.html"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">Set up local workspace:</span></a></li></ol></nav>
2024-02-13 14:28:18 +00:00
<a class="flex-grow-1" role="button" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item" aria-controls="quarto-sidebar" aria-expanded="false" aria-label="Toggle sidebar navigation" onclick="if (window.quartoToggleHeadroom) { window.quartoToggleHeadroom(); }">
</a>
2023-10-02 10:52:45 +00:00
<button type="button" class="btn quarto-search-button" aria-label="" onclick="window.quartoOpenSearch();">
<i class="bi bi-search"></i>
</button>
</div>
</nav>
</header>
<!-- content -->
<div id="quarto-content" class="quarto-container page-columns page-rows-contents page-layout-article">
<!-- sidebar -->
2024-02-13 14:28:18 +00:00
<nav id="quarto-sidebar" class="sidebar collapse collapse-horizontal quarto-sidebar-collapse-item sidebar-navigation floating overflow-auto">
2023-10-02 10:52:45 +00:00
<div class="pt-lg-2 mt-2 text-left sidebar-header">
<div class="sidebar-title mb-0 py-0">
<a href="./">Hacking Religion: TRS &amp; Data Science in Action</a>
</div>
</div>
<div class="mt-2 flex-shrink-0 align-items-center">
<div class="sidebar-search">
<div id="quarto-search" class="" title="Search"></div>
</div>
</div>
<div class="sidebar-menu-container">
<ul class="list-unstyled mt-1">
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./index.html" class="sidebar-item-text sidebar-link">
2023-10-12 16:08:37 +00:00
<span class="menu-text">Introduction: Hacking Religion</span></a>
2023-10-02 10:52:45 +00:00
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./chapter_1.html" class="sidebar-item-text sidebar-link active">
2024-02-15 12:36:03 +00:00
<span class="menu-text"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">Set up local workspace:</span></span></a>
2023-10-02 10:52:45 +00:00
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./chapter_2.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">Different ways to measure religion using data science</span></span></a>
2023-10-02 10:52:45 +00:00
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./chapter_3.html" class="sidebar-item-text sidebar-link">
2023-10-12 16:08:37 +00:00
<span class="menu-text"><span class="chapter-number">3</span>&nbsp; <span class="chapter-title">Mapping churches: geospatial data science</span></span></a>
2023-10-02 10:52:45 +00:00
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./chapter_4.html" class="sidebar-item-text sidebar-link">
2023-10-12 16:08:37 +00:00
<span class="menu-text"><span class="chapter-number">4</span>&nbsp; <span class="chapter-title">Data scraping, corpus analysis and wordclouds</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./chapter_5.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">5</span>&nbsp; <span class="chapter-title">Whats next?</span></span></a>
2023-10-02 10:52:45 +00:00
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./summary.html" class="sidebar-item-text sidebar-link">
<span class="menu-text"><span class="chapter-number">6</span>&nbsp; <span class="chapter-title">Summary</span></span></a>
</div>
</li>
<li class="sidebar-item">
<div class="sidebar-item-container">
<a href="./references.html" class="sidebar-item-text sidebar-link">
<span class="menu-text">References</span></a>
</div>
</li>
</ul>
</div>
</nav>
2024-02-13 14:28:18 +00:00
<div id="quarto-sidebar-glass" class="quarto-sidebar-collapse-item" data-bs-toggle="collapse" data-bs-target=".quarto-sidebar-collapse-item"></div>
2023-10-02 10:52:45 +00:00
<!-- margin-sidebar -->
<div id="quarto-margin-sidebar" class="sidebar margin-sidebar">
<nav id="TOC" role="doc-toc" class="toc-active">
<h2 id="toc-title">Table of contents</h2>
<ul>
2024-02-15 12:36:03 +00:00
<li><a href="#introducing-the-2021-uk-census" id="toc-introducing-the-2021-uk-census" class="nav-link active" data-scroll-target="#introducing-the-2021-uk-census"><span class="header-section-number">2</span> Introducing the 2021 UK Census</a></li>
<li><a href="#getting-started-with-uk-census-data" id="toc-getting-started-with-uk-census-data" class="nav-link" data-scroll-target="#getting-started-with-uk-census-data"><span class="header-section-number">3</span> Getting started with UK Census data</a></li>
<li><a href="#examining-data" id="toc-examining-data" class="nav-link" data-scroll-target="#examining-data"><span class="header-section-number">4</span> Examining data:</a></li>
<li><a href="#parsing-and-exploring-your-data" id="toc-parsing-and-exploring-your-data" class="nav-link" data-scroll-target="#parsing-and-exploring-your-data"><span class="header-section-number">5</span> Parsing and Exploring your data</a></li>
<li><a href="#making-your-first-data-visulation-the-humble-bar-chart" id="toc-making-your-first-data-visulation-the-humble-bar-chart" class="nav-link" data-scroll-target="#making-your-first-data-visulation-the-humble-bar-chart"><span class="header-section-number">6</span> Making your first data visulation: the humble bar chart</a>
2024-02-13 14:28:18 +00:00
<ul class="collapse">
2024-02-15 12:36:03 +00:00
<li><a href="#base-r" id="toc-base-r" class="nav-link" data-scroll-target="#base-r"><span class="header-section-number">6.1</span> Base R</a></li>
<li><a href="#ggplot" id="toc-ggplot" class="nav-link" data-scroll-target="#ggplot"><span class="header-section-number">6.2</span> GGPlot</a></li>
2023-10-02 10:52:45 +00:00
</ul></li>
2024-02-15 12:36:03 +00:00
<li><a href="#telling-the-truth-in-data-science-is-your-chart-accurate" id="toc-telling-the-truth-in-data-science-is-your-chart-accurate" class="nav-link" data-scroll-target="#telling-the-truth-in-data-science-is-your-chart-accurate"><span class="header-section-number">7</span> Telling the truth in data science: Is your chart accurate?</a></li>
<li><a href="#multifactor-visualisation" id="toc-multifactor-visualisation" class="nav-link" data-scroll-target="#multifactor-visualisation"><span class="header-section-number">8</span> Multifactor Visualisation</a></li>
2023-10-02 10:52:45 +00:00
</ul>
</nav>
</div>
<!-- main -->
<main class="content page-columns page-full" id="quarto-document-content">
<header id="title-block-header" class="quarto-title-block default">
<div class="quarto-title">
2024-02-15 12:36:03 +00:00
<h1 class="title"><span class="chapter-number">1</span>&nbsp; <span class="chapter-title">Set up local workspace:</span></h1>
2023-10-02 10:52:45 +00:00
</div>
<div class="quarto-title-meta">
</div>
2024-02-13 14:28:18 +00:00
2023-10-02 10:52:45 +00:00
</header>
2024-02-13 14:28:18 +00:00
<p>In this chapter were going to do some exciting things with census data. This is a very important dataset, often analysed, but much less frequently with regards to the subject of religion and almost never with the level of granularity youll learn to work with over the course of this chapter.</p>
<p>Well get to the good stuff in a moment, but first we need to do a bit of setup. The code provided here is intended to set up your workspace and is also necessary for the <code>quarto</code> application we use to build this book. If you hadnt already noticed, this book is also generated by live (and living!) R code. Quarto is an application which blends together text and blocks of code to produce books. You can ignore most of it for now, though if youre running the code as we go along, youll definitely want to include these lines, as they create directories where your files will go as you create charts and extract data below and tells R where to find those files:</p>
2023-10-02 10:52:45 +00:00
<div class="cell">
2024-02-13 14:35:09 +00:00
<div class="sourceCode cell-code" id="cb1"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb1-1"><a href="#cb1-1" aria-hidden="true" tabindex="-1"></a><span class="fu">setwd</span>(<span class="st">"/Users/kidwellj/gits/hacking_religion_textbook/hacking_religion"</span>)</span>
<span id="cb1-2"><a href="#cb1-2" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(here) <span class="sc">|&gt;</span> <span class="fu">suppressPackageStartupMessages</span>()</span>
<span id="cb1-3"><a href="#cb1-3" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(tidyverse) <span class="sc">|&gt;</span> <span class="fu">suppressPackageStartupMessages</span>()</span>
<span id="cb1-4"><a href="#cb1-4" aria-hidden="true" tabindex="-1"></a>here<span class="sc">::</span><span class="fu">i_am</span>(<span class="st">"chapter_1.qmd"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2023-10-02 10:52:45 +00:00
<div class="cell-output cell-output-stderr">
<pre><code>here() starts at /Users/kidwellj/gits/hacking_religion_textbook/hacking_religion</code></pre>
</div>
2024-02-15 12:36:03 +00:00
<div class="sourceCode cell-code" id="cb3"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb3-1"><a href="#cb3-1" aria-hidden="true" tabindex="-1"></a><span class="cf">if</span> (<span class="fu">dir.exists</span>(<span class="st">"data"</span>) <span class="sc">==</span> <span class="cn">FALSE</span>) {</span>
<span id="cb3-2"><a href="#cb3-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">dir.create</span>(<span class="st">"data"</span>) </span>
<span id="cb3-3"><a href="#cb3-3" aria-hidden="true" tabindex="-1"></a>}</span>
<span id="cb3-4"><a href="#cb3-4" aria-hidden="true" tabindex="-1"></a><span class="cf">if</span> (<span class="fu">dir.exists</span>(<span class="st">"figures"</span>) <span class="sc">==</span> <span class="cn">FALSE</span>) {</span>
<span id="cb3-5"><a href="#cb3-5" aria-hidden="true" tabindex="-1"></a> <span class="fu">dir.create</span>(<span class="st">"figures"</span>) </span>
<span id="cb3-6"><a href="#cb3-6" aria-hidden="true" tabindex="-1"></a>}</span>
<span id="cb3-7"><a href="#cb3-7" aria-hidden="true" tabindex="-1"></a><span class="cf">if</span> (<span class="fu">dir.exists</span>(<span class="st">"derivedData"</span>) <span class="sc">==</span> <span class="cn">FALSE</span>) {</span>
<span id="cb3-8"><a href="#cb3-8" aria-hidden="true" tabindex="-1"></a> <span class="fu">dir.create</span>(<span class="st">"derivedData"</span>)</span>
<span id="cb3-9"><a href="#cb3-9" aria-hidden="true" tabindex="-1"></a>}</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
</div>
<section id="introducing-the-2021-uk-census" class="level1" data-number="2">
<h1 data-number="2"><span class="header-section-number">2</span> Introducing the 2021 UK Census</h1>
2024-02-13 14:28:18 +00:00
<p>For our first exercise in this book, were going to work with a census dataset. As youll see by contrast in chapter 2, census data is intended to represent as fully as possible the demographic features of a specific community, in this case, the United Kingdom. We might assume that a large-scale survey given to 1000 or more respondents and distributed appropriately across a variety of demographics will approximate the results of a census, but theres really no substitite for a survey which has been given to (nearly) the entire population. This also allows us to compare a number of different subsets, as well explore further below. The big question that were confronting in this chapter is how best to represent religious belonging and participation at such a large scale, and to flag up some of the hidden limitations in this seemingly comprehensive dataset.</p>
2024-02-15 12:36:03 +00:00
</section>
<section id="getting-started-with-uk-census-data" class="level1 page-columns page-full" data-number="3">
<h1 data-number="3"><span class="header-section-number">3</span> Getting started with UK Census data</h1>
2024-02-13 14:28:18 +00:00
<p>Lets start by importing some data into R. Because R is what is called an object-oriented programming language, well always take our information and give it a home inside a named object. There are many different kinds of objects, which you can specify, but usually R will assign a type that seems to fit best, often a table of data which looks a bit like a spreadsheet which is called a <code>dataframe</code>.</p>
<div class="page-columns page-full"><p></p><div class="no-row-height column-margin column-container"><span class="margin-aside">If youd like to explore this all in a bit more depth, you can find a very helpful summary in R for Data Science, chapter 8, <a href="https://r4ds.hadley.nz/data-import#reading-data-from-a-file">“data import”</a>.</span></div></div>
<p>In the example below, were going to begin by reading in data from a comma separated value file (“csv”) which has rows of information on separate lines in a text file with each column separated by a comma. This is one of the standard plain text file formats. R has a function you can use to import this efficiently called <code>read.csv</code>. Each line of code in R usually starts with the object, and then follows with instructions on what were going to put inside it, where that comes from, and how to format it:</p>
<div class="cell">
<div class="sourceCode cell-code" id="cb4"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb4-1"><a href="#cb4-1" aria-hidden="true" tabindex="-1"></a>uk_census_2021_religion <span class="ot">&lt;-</span> <span class="fu">read.csv</span>(<span class="fu">here</span>(<span class="st">"example_data"</span>, <span class="st">"census2021-ts030-rgn.csv"</span>)) </span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2023-10-02 10:52:45 +00:00
</div>
2023-10-05 13:29:31 +00:00
</section>
2024-02-15 12:36:03 +00:00
<section id="examining-data" class="level1" data-number="4">
<h1 data-number="4"><span class="header-section-number">4</span> Examining data:</h1>
2023-10-02 10:52:45 +00:00
<p>Whats in the table? You can take a quick look at either the top of the data frame, or the bottom using one of the following commands:</p>
<div class="cell">
2024-02-13 14:28:18 +00:00
<div class="sourceCode cell-code" id="cb5"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb5-1"><a href="#cb5-1" aria-hidden="true" tabindex="-1"></a><span class="fu">head</span>(uk_census_2021_religion)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2023-10-02 10:52:45 +00:00
<div class="cell-output cell-output-stdout">
<pre><code> geography total no_religion christian buddhist hindu jewish
1 North East 2647012 1058122 1343948 7026 10924 4389
2 North West 7417397 2419624 3895779 23028 49749 33285
3 Yorkshire and The Humber 5480774 2161185 2461519 15803 29243 9355
4 East Midlands 4880054 1950354 2214151 14521 120345 4313
5 West Midlands 5950756 1955003 2770559 18804 88116 4394
6 East 6335072 2544509 2955071 26814 86631 42012
muslim sikh other no_response
1 72102 7206 9950 133345
2 563105 11862 28103 392862
3 442533 24034 23618 313484
4 210766 53950 24813 286841
5 569963 172398 31805 339714
6 234744 24284 36380 384627</code></pre>
</div>
</div>
2024-02-13 14:28:18 +00:00
<p>This is actually a fairly ugly table, so Ill use an R tool called <code>kable</code> to give you prettier tables in the future, like this:</p>
2023-10-02 10:52:45 +00:00
<div class="cell">
2024-02-13 14:28:18 +00:00
<div class="sourceCode cell-code" id="cb7"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb7-1"><a href="#cb7-1" aria-hidden="true" tabindex="-1"></a>knitr<span class="sc">::</span><span class="fu">kable</span>(<span class="fu">head</span>(uk_census_2021_religion))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2023-10-02 10:52:45 +00:00
<div class="cell-output-display">
<table class="table table-sm table-striped small">
<colgroup>
<col style="width: 22%">
<col style="width: 7%">
<col style="width: 10%">
<col style="width: 9%">
<col style="width: 8%">
<col style="width: 6%">
<col style="width: 6%">
<col style="width: 6%">
<col style="width: 6%">
<col style="width: 5%">
<col style="width: 10%">
</colgroup>
<thead>
<tr class="header">
<th style="text-align: left;">geography</th>
<th style="text-align: right;">total</th>
<th style="text-align: right;">no_religion</th>
<th style="text-align: right;">christian</th>
<th style="text-align: right;">buddhist</th>
<th style="text-align: right;">hindu</th>
<th style="text-align: right;">jewish</th>
<th style="text-align: right;">muslim</th>
<th style="text-align: right;">sikh</th>
<th style="text-align: right;">other</th>
<th style="text-align: right;">no_response</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td style="text-align: left;">North East</td>
<td style="text-align: right;">2647012</td>
<td style="text-align: right;">1058122</td>
<td style="text-align: right;">1343948</td>
<td style="text-align: right;">7026</td>
<td style="text-align: right;">10924</td>
<td style="text-align: right;">4389</td>
<td style="text-align: right;">72102</td>
<td style="text-align: right;">7206</td>
<td style="text-align: right;">9950</td>
<td style="text-align: right;">133345</td>
</tr>
<tr class="even">
<td style="text-align: left;">North West</td>
<td style="text-align: right;">7417397</td>
<td style="text-align: right;">2419624</td>
<td style="text-align: right;">3895779</td>
<td style="text-align: right;">23028</td>
<td style="text-align: right;">49749</td>
<td style="text-align: right;">33285</td>
<td style="text-align: right;">563105</td>
<td style="text-align: right;">11862</td>
<td style="text-align: right;">28103</td>
<td style="text-align: right;">392862</td>
</tr>
<tr class="odd">
<td style="text-align: left;">Yorkshire and The Humber</td>
<td style="text-align: right;">5480774</td>
<td style="text-align: right;">2161185</td>
<td style="text-align: right;">2461519</td>
<td style="text-align: right;">15803</td>
<td style="text-align: right;">29243</td>
<td style="text-align: right;">9355</td>
<td style="text-align: right;">442533</td>
<td style="text-align: right;">24034</td>
<td style="text-align: right;">23618</td>
<td style="text-align: right;">313484</td>
</tr>
<tr class="even">
<td style="text-align: left;">East Midlands</td>
<td style="text-align: right;">4880054</td>
<td style="text-align: right;">1950354</td>
<td style="text-align: right;">2214151</td>
<td style="text-align: right;">14521</td>
<td style="text-align: right;">120345</td>
<td style="text-align: right;">4313</td>
<td style="text-align: right;">210766</td>
<td style="text-align: right;">53950</td>
<td style="text-align: right;">24813</td>
<td style="text-align: right;">286841</td>
</tr>
<tr class="odd">
<td style="text-align: left;">West Midlands</td>
<td style="text-align: right;">5950756</td>
<td style="text-align: right;">1955003</td>
<td style="text-align: right;">2770559</td>
<td style="text-align: right;">18804</td>
<td style="text-align: right;">88116</td>
<td style="text-align: right;">4394</td>
<td style="text-align: right;">569963</td>
<td style="text-align: right;">172398</td>
<td style="text-align: right;">31805</td>
<td style="text-align: right;">339714</td>
</tr>
<tr class="even">
<td style="text-align: left;">East</td>
<td style="text-align: right;">6335072</td>
<td style="text-align: right;">2544509</td>
<td style="text-align: right;">2955071</td>
<td style="text-align: right;">26814</td>
<td style="text-align: right;">86631</td>
<td style="text-align: right;">42012</td>
<td style="text-align: right;">234744</td>
<td style="text-align: right;">24284</td>
<td style="text-align: right;">36380</td>
<td style="text-align: right;">384627</td>
</tr>
</tbody>
</table>
</div>
</div>
<p>You can see how Ive nested the previous command inside the <code>kable</code> command. For reference, in some cases when youre working with really complex scripts with many different libraries and functions, they may end up with functions that have the same name, and you may unwittingly run a function from the wrong library. You can specify the library where the function is meant to come from by preceding it with :: as weve done <code>knitr::</code> above. The same kind of output can be gotten using <code>tail</code> which shows the final lines of a given data object:</p>
2023-10-02 10:52:45 +00:00
<div class="cell">
2024-02-13 14:28:18 +00:00
<div class="sourceCode cell-code" id="cb8"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb8-1"><a href="#cb8-1" aria-hidden="true" tabindex="-1"></a>knitr<span class="sc">::</span><span class="fu">kable</span>(<span class="fu">tail</span>(uk_census_2021_religion))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2023-10-02 10:52:45 +00:00
<div class="cell-output-display">
<table class="table table-sm table-striped small">
<colgroup>
<col style="width: 2%">
<col style="width: 13%">
<col style="width: 7%">
<col style="width: 11%">
<col style="width: 9%">
<col style="width: 8%">
<col style="width: 6%">
<col style="width: 6%">
<col style="width: 7%">
<col style="width: 6%">
<col style="width: 5%">
<col style="width: 11%">
</colgroup>
<thead>
<tr class="header">
<th style="text-align: left;"></th>
<th style="text-align: left;">geography</th>
<th style="text-align: right;">total</th>
<th style="text-align: right;">no_religion</th>
<th style="text-align: right;">christian</th>
<th style="text-align: right;">buddhist</th>
<th style="text-align: right;">hindu</th>
<th style="text-align: right;">jewish</th>
<th style="text-align: right;">muslim</th>
<th style="text-align: right;">sikh</th>
<th style="text-align: right;">other</th>
<th style="text-align: right;">no_response</th>
</tr>
</thead>
<tbody>
<tr class="odd">
<td style="text-align: left;">5</td>
<td style="text-align: left;">West Midlands</td>
<td style="text-align: right;">5950756</td>
<td style="text-align: right;">1955003</td>
<td style="text-align: right;">2770559</td>
<td style="text-align: right;">18804</td>
<td style="text-align: right;">88116</td>
<td style="text-align: right;">4394</td>
<td style="text-align: right;">569963</td>
<td style="text-align: right;">172398</td>
<td style="text-align: right;">31805</td>
<td style="text-align: right;">339714</td>
</tr>
<tr class="even">
<td style="text-align: left;">6</td>
<td style="text-align: left;">East</td>
<td style="text-align: right;">6335072</td>
<td style="text-align: right;">2544509</td>
<td style="text-align: right;">2955071</td>
<td style="text-align: right;">26814</td>
<td style="text-align: right;">86631</td>
<td style="text-align: right;">42012</td>
<td style="text-align: right;">234744</td>
<td style="text-align: right;">24284</td>
<td style="text-align: right;">36380</td>
<td style="text-align: right;">384627</td>
</tr>
<tr class="odd">
<td style="text-align: left;">7</td>
<td style="text-align: left;">London</td>
<td style="text-align: right;">8799728</td>
<td style="text-align: right;">2380404</td>
<td style="text-align: right;">3577681</td>
<td style="text-align: right;">77425</td>
<td style="text-align: right;">453034</td>
<td style="text-align: right;">145466</td>
<td style="text-align: right;">1318754</td>
<td style="text-align: right;">144543</td>
<td style="text-align: right;">86759</td>
<td style="text-align: right;">615662</td>
</tr>
<tr class="even">
<td style="text-align: left;">8</td>
<td style="text-align: left;">South East</td>
<td style="text-align: right;">9278068</td>
<td style="text-align: right;">3733094</td>
<td style="text-align: right;">4313319</td>
<td style="text-align: right;">54433</td>
<td style="text-align: right;">154748</td>
<td style="text-align: right;">18682</td>
<td style="text-align: right;">309067</td>
<td style="text-align: right;">74348</td>
<td style="text-align: right;">54098</td>
<td style="text-align: right;">566279</td>
</tr>
<tr class="odd">
<td style="text-align: left;">9</td>
<td style="text-align: left;">South West</td>
<td style="text-align: right;">5701186</td>
<td style="text-align: right;">2513369</td>
<td style="text-align: right;">2635872</td>
<td style="text-align: right;">24579</td>
<td style="text-align: right;">27746</td>
<td style="text-align: right;">7387</td>
<td style="text-align: right;">80152</td>
<td style="text-align: right;">7465</td>
<td style="text-align: right;">36884</td>
<td style="text-align: right;">367732</td>
</tr>
<tr class="even">
<td style="text-align: left;">10</td>
<td style="text-align: left;">Wales</td>
<td style="text-align: right;">3107494</td>
<td style="text-align: right;">1446398</td>
<td style="text-align: right;">1354773</td>
<td style="text-align: right;">10075</td>
<td style="text-align: right;">12242</td>
<td style="text-align: right;">2044</td>
<td style="text-align: right;">66947</td>
<td style="text-align: right;">4048</td>
<td style="text-align: right;">15926</td>
<td style="text-align: right;">195041</td>
</tr>
</tbody>
</table>
</div>
</div>
</section>
2024-02-15 12:36:03 +00:00
<section id="parsing-and-exploring-your-data" class="level1 page-columns page-full" data-number="5">
<h1 data-number="5"><span class="header-section-number">5</span> Parsing and Exploring your data</h1>
<p>The first thing youre going to want to do is to take a smaller subset of a large data set, either by filtering out certain columns or rows. Lets say we want to just work with the data from the West Midlands and wed like to omit some of the other columns which relate to different geographic areas. We can choose a specific range of columns using <code>select</code>, like this:</p>
<p>You can use the <code>filter</code> command to do this. To give an example, <code>filter</code> can pick a single <em>row</em> in the following way:</p>
2023-10-02 10:52:45 +00:00
<div class="cell">
2024-02-13 14:28:18 +00:00
<div class="sourceCode cell-code" id="cb9"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb9-1"><a href="#cb9-1" aria-hidden="true" tabindex="-1"></a>uk_census_2021_religion_wmids <span class="ot">&lt;-</span> uk_census_2021_religion <span class="sc">%&gt;%</span> <span class="fu">filter</span>(geography<span class="sc">==</span><span class="st">"West Midlands"</span>) </span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2023-10-02 10:52:45 +00:00
</div>
<p>In the line above, youll see that weve created a new object which contains this more specific subset of the original data. You can also overwrite your original object with the new information, and as you go along youll need to make decisions about whether to keep many iterations as different objects, or if you want to try and hold onto only the bare essentials.</p>
<p>Its also worth noting that there are only a few rules for naming objects (you cant have spaces, for one thing), so youll want to come up with a specific convention that works for you. I tend to assign a name for each object that indicates the dataset it has come from and then chain on further names using underscore characters which indicate what kind of subset it is. You may want to be careful about letting your names get too long, and find comprehensible ways to abbreviate.</p>
<p>Now well use select in a different way to narrow our data to specific <em>columns</em> that are needed (no totals!).</p>
2024-02-13 14:28:18 +00:00
<div class="page-columns page-full"><p></p><div class="no-row-height column-margin column-container"><span class="margin-aside">Some readers will want to pause here and check out Hadley Wickhams “R For Data Science” book, in the section, <a href="https://r4ds.hadley.nz/data-visualize#introduction">“Data visualisation”</a> to get a fuller explanation of how to explore your data.</span></div></div>
2023-10-02 10:52:45 +00:00
<p>In keeping with my goal to demonstrate data science through examples, were going to move on to producing some snappy looking charts for this data.</p>
</section>
2024-02-15 12:36:03 +00:00
<section id="making-your-first-data-visulation-the-humble-bar-chart" class="level1 page-columns page-full" data-number="6">
<h1 data-number="6"><span class="header-section-number">6</span> Making your first data visulation: the humble bar chart</h1>
2023-10-02 10:52:45 +00:00
<p>Weve got a nice lean set of data, so now its time to visualise this. Well start by making a pie chart:</p>
<div class="cell">
2024-02-13 14:28:18 +00:00
<div class="sourceCode cell-code" id="cb10"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb10-1"><a href="#cb10-1" aria-hidden="true" tabindex="-1"></a>uk_census_2021_religion_wmids <span class="ot">&lt;-</span> uk_census_2021_religion_wmids <span class="sc">%&gt;%</span> <span class="fu">select</span>(no_religion<span class="sc">:</span>no_response)</span>
<span id="cb10-2"><a href="#cb10-2" aria-hidden="true" tabindex="-1"></a>uk_census_2021_religion_wmids <span class="ot">&lt;-</span> <span class="fu">gather</span>(uk_census_2021_religion_wmids)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2023-10-02 10:52:45 +00:00
</div>
<p>There are two basic ways to do visualisations in R. You can work with basic functions in R, often called “base R” or you can work with an alternative (and extremely popular) library called ggplot which aims to streamline the coding you need to make a chart:</p>
2024-02-15 12:36:03 +00:00
<section id="base-r" class="level2" data-number="6.1">
<h2 data-number="6.1" class="anchored" data-anchor-id="base-r"><span class="header-section-number">6.1</span> Base R</h2>
<p>Heres the code you can use to create a new data object which contains the information necessary for our chart. Ive just used the generic name “df” because we wont hold on to this chart. Youll also see that Ive organised the data in descending order using the base R function <code>order()</code>. In the next line, we use the Base R function “barplot” to create a chart.</p>
2023-10-02 10:52:45 +00:00
<div class="cell">
2024-02-13 14:28:18 +00:00
<div class="sourceCode cell-code" id="cb11"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb11-1"><a href="#cb11-1" aria-hidden="true" tabindex="-1"></a>df <span class="ot">&lt;-</span> uk_census_2021_religion_wmids[<span class="fu">order</span>(uk_census_2021_religion_wmids<span class="sc">$</span>value,<span class="at">decreasing =</span> <span class="cn">TRUE</span>),]</span>
<span id="cb11-2"><a href="#cb11-2" aria-hidden="true" tabindex="-1"></a><span class="fu">barplot</span>(<span class="at">height=</span>df<span class="sc">$</span>value, <span class="at">names=</span>df<span class="sc">$</span>key)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2023-10-02 10:52:45 +00:00
<div class="cell-output-display">
2024-02-13 14:28:18 +00:00
<div>
<figure class="figure">
<p><img src="chapter_1_files/figure-html/unnamed-chunk-7-1.png" class="img-fluid figure-img" width="672"></p>
</figure>
</div>
2023-10-02 10:52:45 +00:00
</div>
</div>
</section>
2024-02-15 12:36:03 +00:00
<section id="ggplot" class="level2 page-columns page-full" data-number="6.2">
<h2 data-number="6.2" class="anchored" data-anchor-id="ggplot"><span class="header-section-number">6.2</span> GGPlot</h2>
<p>The conventions of GGPlot take a bit of getting used to, but its a very powerful tool which will scale to quite complicated charts.</p>
2023-10-02 10:52:45 +00:00
<div class="cell">
2024-02-15 12:30:17 +00:00
<div class="sourceCode cell-code" id="annotated-cell-10"><pre class="sourceCode r code-annotation-code code-with-copy"><code class="sourceCode r"><span id="annotated-cell-10-1"><a href="#annotated-cell-10-1" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(uk_census_2021_religion_wmids, <span class="fu">aes</span>(<span class="at">x =</span> key, <span class="at">y =</span> value)) <span class="sc">+</span> <span class="fu">geom_bar</span>(<span class="at">stat =</span> <span class="st">"identity"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2023-10-03 18:18:50 +00:00
<div class="cell-annotation">
<dl class="code-annotation-container-grid">
2024-02-13 14:28:18 +00:00
<dt data-target-cell="annotated-cell-11" data-target-annotation="2">2</dt>
2023-10-03 18:18:50 +00:00
<dd>
<span data-code-cell="annotated-cell-11" data-code-lines="1" data-code-annotation="2">Then we re-order the column by size.</span>
2023-10-03 18:18:50 +00:00
</dd>
</dl>
</div>
2023-10-02 10:52:45 +00:00
<div class="cell-output-display">
2024-02-13 14:28:18 +00:00
<div>
<figure class="figure">
<p><img src="chapter_1_files/figure-html/unnamed-chunk-8-1.png" class="img-fluid figure-img" width="672"></p>
</figure>
</div>
2023-10-02 10:52:45 +00:00
</div>
2024-02-13 14:28:18 +00:00
<div class="sourceCode cell-code" id="annotated-cell-11"><pre class="sourceCode r code-annotation-code code-with-copy code-annotated"><code class="sourceCode r"><a class="code-annotation-anchor" data-target-cell="annotated-cell-11" data-target-annotation="2" onclick="event.preventDefault();">2</a><span id="annotated-cell-11-1" class="code-annotation-target"><a href="#annotated-cell-11-1" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(uk_census_2021_religion_wmids, <span class="fu">aes</span>(<span class="at">x=</span> <span class="fu">reorder</span>(key,<span class="sc">-</span>value),value)) <span class="sc">+</span> <span class="fu">geom_bar</span>(<span class="at">stat =</span><span class="st">"identity"</span>)</span><div class="code-annotation-gutter-bg"></div><div class="code-annotation-gutter"></div></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2023-10-02 10:52:45 +00:00
<div class="cell-output-display">
2024-02-13 14:28:18 +00:00
<div>
<figure class="figure">
<p><img src="chapter_1_files/figure-html/unnamed-chunk-8-2.png" class="img-fluid figure-img" width="672"></p>
</figure>
2023-10-02 10:52:45 +00:00
</div>
</div>
2024-02-13 14:28:18 +00:00
</div>
<p>This initial chart doesnt include a “totals” column, as it isnt in the data and these plotting tools simply represent whatever data you put into them. Its nice to have a list of sums for each column, and this is pretty easy to do in R. As youll see below, we are going to take the original table, and overwrite it with a new column added:</p>
2023-10-03 18:18:50 +00:00
<div class="cell">
2024-02-13 14:28:18 +00:00
<div class="sourceCode cell-code" id="annotated-cell-12"><pre class="sourceCode r code-annotation-code code-with-copy code-annotated"><code class="sourceCode r"><a class="code-annotation-anchor" data-target-cell="annotated-cell-12" data-target-annotation="1" onclick="event.preventDefault();">1</a><span id="annotated-cell-12-1" class="code-annotation-target"><a href="#annotated-cell-12-1" aria-hidden="true" tabindex="-1"></a>uk_census_2021_religion_totals <span class="ot">&lt;-</span> uk_census_2021_religion <span class="sc">%&gt;%</span> <span class="fu">select</span>(no_religion<span class="sc">:</span>no_response)</span>
<span id="annotated-cell-12-2"><a href="#annotated-cell-12-2" aria-hidden="true" tabindex="-1"></a>uk_census_2021_religion_totals <span class="ot">&lt;-</span> uk_census_2021_religion_totals <span class="sc">%&gt;%</span></span>
<a class="code-annotation-anchor" data-target-cell="annotated-cell-12" data-target-annotation="2" onclick="event.preventDefault();">2</a><span id="annotated-cell-12-3" class="code-annotation-target"><a href="#annotated-cell-12-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">summarise</span>(<span class="fu">across</span>(<span class="fu">everything</span>(), <span class="sc">~</span> <span class="fu">sum</span>(., <span class="at">na.rm =</span> <span class="cn">TRUE</span>)))</span>
<a class="code-annotation-anchor" data-target-cell="annotated-cell-12" data-target-annotation="3" onclick="event.preventDefault();">3</a><span id="annotated-cell-12-4" class="code-annotation-target"><a href="#annotated-cell-12-4" aria-hidden="true" tabindex="-1"></a>uk_census_2021_religion_totals <span class="ot">&lt;-</span> <span class="fu">gather</span>(uk_census_2021_religion_totals)</span>
<a class="code-annotation-anchor" data-target-cell="annotated-cell-12" data-target-annotation="4" onclick="event.preventDefault();">4</a><span id="annotated-cell-12-5" class="code-annotation-target"><a href="#annotated-cell-12-5" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(uk_census_2021_religion_totals, <span class="fu">aes</span>(<span class="at">x=</span> <span class="fu">reorder</span>(key,<span class="sc">-</span>value),value)) <span class="sc">+</span> <span class="fu">geom_bar</span>(<span class="at">stat =</span><span class="st">"identity"</span>)</span><div class="code-annotation-gutter-bg"></div><div class="code-annotation-gutter"></div></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2023-10-03 18:18:50 +00:00
<div class="cell-annotation">
<dl class="code-annotation-container-grid">
2024-02-13 14:28:18 +00:00
<dt data-target-cell="annotated-cell-12" data-target-annotation="1">1</dt>
2023-10-03 18:18:50 +00:00
<dd>
2024-02-13 14:28:18 +00:00
<span data-code-cell="annotated-cell-12" data-code-lines="1" data-code-annotation="1">First, remove the column with region names and the totals for the regions as we want just integer data.</span>
2023-10-03 18:18:50 +00:00
</dd>
2024-02-13 14:28:18 +00:00
<dt data-target-cell="annotated-cell-12" data-target-annotation="2">2</dt>
2023-10-03 18:18:50 +00:00
<dd>
2024-02-13 14:28:18 +00:00
<span data-code-cell="annotated-cell-12" data-code-lines="3" data-code-annotation="2">Second calculate the totals. In this example we use the tidyverse library <code>dplyr()</code>, but you can also do this using base R with <code>colsums()</code> like this: <code>uk_census_2021_religion_totals &lt;- colSums(uk_census_2021_religion_totals, na.rm = TRUE)</code>. The downside with base R is that youll also need to convert the result into a dataframe for <code>ggplot</code> like this: <code>uk_census_2021_religion_totals &lt;- as.data.frame(uk_census_2021_religion_totals)</code></span>
2023-10-03 18:18:50 +00:00
</dd>
2024-02-13 14:28:18 +00:00
<dt data-target-cell="annotated-cell-12" data-target-annotation="3">3</dt>
2023-10-03 18:18:50 +00:00
<dd>
<span data-code-cell="annotated-cell-12" data-code-lines="4" data-code-annotation="3">In order to visualise this data using ggplot, we need to shift this data from wide to long format. This is a quick job using <code>gather()</code></span>
2023-10-03 18:18:50 +00:00
</dd>
2024-02-13 14:28:18 +00:00
<dt data-target-cell="annotated-cell-12" data-target-annotation="4">4</dt>
2023-10-03 18:18:50 +00:00
<dd>
2024-02-13 14:28:18 +00:00
<span data-code-cell="annotated-cell-12" data-code-lines="5" data-code-annotation="4">Now plot it out and have a look!</span>
2023-10-03 18:18:50 +00:00
</dd>
</dl>
2023-10-02 10:52:45 +00:00
</div>
2023-10-03 18:18:50 +00:00
<div class="cell-output-display">
2024-02-13 14:28:18 +00:00
<div>
<figure class="figure">
<p><img src="chapter_1_files/figure-html/unnamed-chunk-9-1.png" class="img-fluid figure-img" width="672"></p>
</figure>
</div>
2023-10-02 10:52:45 +00:00
</div>
</div>
<p>You might notice that these two dataframes give us somewhat different results. But with data science, its much more interesting to compare these two side-by-side in a visualisation. We can join these two dataframes and plot the bars side by side using <code>bind()</code> - which can be done by columns with <code>cbind()</code> and rows using <code>rbind()</code>:</p>
2023-10-03 18:18:50 +00:00
<div class="cell">
2024-02-13 14:28:18 +00:00
<div class="sourceCode cell-code" id="cb12"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb12-1"><a href="#cb12-1" aria-hidden="true" tabindex="-1"></a>uk_census_2021_religion_merged <span class="ot">&lt;-</span> <span class="fu">rbind</span>(uk_census_2021_religion_totals, uk_census_2021_religion_wmids)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2023-10-02 10:52:45 +00:00
</div>
<p>Do you notice theres going to be a problem here? How can we tell one set from the other? We need to add in something idenfiable first! To do this we can simply create a new column for each with identifiable information before we bind them:</p>
2023-10-03 18:18:50 +00:00
<div class="cell">
2024-02-13 14:28:18 +00:00
<div class="sourceCode cell-code" id="cb13"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb13-1"><a href="#cb13-1" aria-hidden="true" tabindex="-1"></a>uk_census_2021_religion_totals<span class="sc">$</span>dataset <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="st">"totals"</span>)</span>
<span id="cb13-2"><a href="#cb13-2" aria-hidden="true" tabindex="-1"></a>uk_census_2021_religion_wmids<span class="sc">$</span>dataset <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="st">"wmids"</span>)</span>
<span id="cb13-3"><a href="#cb13-3" aria-hidden="true" tabindex="-1"></a>uk_census_2021_religion_merged <span class="ot">&lt;-</span> <span class="fu">rbind</span>(uk_census_2021_religion_totals, uk_census_2021_religion_wmids)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2023-10-02 10:52:45 +00:00
</div>
2023-10-03 18:18:50 +00:00
<p>Now were ready to plot out our data as a grouped barplot:</p>
<div class="cell">
2024-02-13 14:28:18 +00:00
<div class="sourceCode cell-code" id="cb14"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb14-1"><a href="#cb14-1" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(uk_census_2021_religion_merged, <span class="fu">aes</span>(<span class="at">fill=</span>dataset, <span class="at">x=</span> <span class="fu">reorder</span>(key,<span class="sc">-</span>value), value)) <span class="sc">+</span> <span class="fu">geom_bar</span>(<span class="at">position=</span><span class="st">"dodge"</span>, <span class="at">stat =</span><span class="st">"identity"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2023-10-03 18:18:50 +00:00
<div class="cell-output-display">
2024-02-13 14:28:18 +00:00
<div>
<figure class="figure">
<p><img src="chapter_1_files/figure-html/unnamed-chunk-12-1.png" class="img-fluid figure-img" width="672"></p>
</figure>
</div>
2023-10-02 10:52:45 +00:00
</div>
</div>
2023-10-03 18:18:50 +00:00
<p>If youre looking closely, you will notice that Ive added two elements to our previous ggplot. Ive asked ggplot to fill in the columns with reference to the <code>dataset</code> column weve just created. Then Ive also asked ggplot to alter the <code>position="dodge"</code> which places bars side by side rather than stacked on top of one another. You can give it a try without this instruction to see how this works. We will use stacked bars in a later chapter, so remember this feature.</p>
<p>If you inspect our chart, you can see that were getting closer, but its not really that helpful to compare the totals. What we need to do is get percentages that can be compared side by side. This is easy to do using another <code>dplyr</code> feature <code>mutate</code>:</p>
2024-02-15 12:30:17 +00:00
<div class="page-columns page-full"><p></p><div class="no-row-height column-margin column-container"><span class="margin-aside">You can find a helpful write-up about dplyr by Antoine Soetewey at, <a href="https://statsandr.com/blog/introduction-to-data-manipulation-in-r-with-dplyr/">“Stats and R”</a>.</span></div></div>
2024-02-13 14:28:18 +00:00
<div class="page-columns page-full"><p></p><div class="no-row-height column-margin column-container"><span class="margin-aside">Its worth noting that an alternative approach is to leave the numbers intact and simply label them differently so they render as percentages on your charts. You can do this with the `scales() library and the label_percent() function. The downside of this approach is that it wont transfer to tables if you make them.</span></div></div>
2023-10-03 18:18:50 +00:00
<div class="cell">
2024-02-13 14:28:18 +00:00
<div class="sourceCode cell-code" id="annotated-cell-16"><pre class="sourceCode r code-annotation-code code-with-copy"><code class="sourceCode r"><span id="annotated-cell-16-1"><a href="#annotated-cell-16-1" aria-hidden="true" tabindex="-1"></a>uk_census_2021_religion_totals <span class="ot">&lt;-</span> uk_census_2021_religion_totals <span class="sc">%&gt;%</span> </span>
<span id="annotated-cell-16-2"><a href="#annotated-cell-16-2" aria-hidden="true" tabindex="-1"></a> dplyr<span class="sc">::</span><span class="fu">mutate</span>(<span class="at">perc =</span> scales<span class="sc">::</span><span class="fu">percent</span>(value <span class="sc">/</span> <span class="fu">sum</span>(value), <span class="at">accuracy =</span> <span class="fl">0.1</span>, <span class="at">trim =</span> <span class="cn">FALSE</span>))</span>
<span id="annotated-cell-16-3"><a href="#annotated-cell-16-3" aria-hidden="true" tabindex="-1"></a>uk_census_2021_religion_wmids <span class="ot">&lt;-</span> uk_census_2021_religion_wmids <span class="sc">%&gt;%</span> </span>
<span id="annotated-cell-16-4"><a href="#annotated-cell-16-4" aria-hidden="true" tabindex="-1"></a> dplyr<span class="sc">::</span><span class="fu">mutate</span>(<span class="at">perc =</span> scales<span class="sc">::</span><span class="fu">percent</span>(value <span class="sc">/</span> <span class="fu">sum</span>(value), <span class="at">accuracy =</span> <span class="fl">0.1</span>, <span class="at">trim =</span> <span class="cn">FALSE</span>))</span>
<span id="annotated-cell-16-5"><a href="#annotated-cell-16-5" aria-hidden="true" tabindex="-1"></a>uk_census_2021_religion_merged <span class="ot">&lt;-</span> <span class="fu">rbind</span>(uk_census_2021_religion_totals, uk_census_2021_religion_wmids)</span>
<span id="annotated-cell-16-6"><a href="#annotated-cell-16-6" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(uk_census_2021_religion_merged, <span class="fu">aes</span>(<span class="at">fill=</span>dataset, <span class="at">x=</span>key, <span class="at">y=</span>perc)) <span class="sc">+</span> <span class="fu">geom_bar</span>(<span class="at">position=</span><span class="st">"dodge"</span>, <span class="at">stat =</span><span class="st">"identity"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2023-10-03 18:18:50 +00:00
<div class="cell-output-display">
2024-02-13 14:28:18 +00:00
<div>
<figure class="figure">
<p><img src="chapter_1_files/figure-html/unnamed-chunk-13-1.png" class="img-fluid figure-img" width="672"></p>
</figure>
</div>
2023-10-02 10:52:45 +00:00
</div>
</div>
<p>This chart gives us a comparison which sets bars from the West Midlands data and UK-wide total data side by side for each category. The same principles that weve used here can be applied to draw in more data. You could, for example, compare census data from different years, e.g.&nbsp;2001 2011 and 2021, as well do below. Our use of <code>dplyr::mutate</code> above can be repeated to add an infinite number of further series which can be plotted in bar groups.</p>
2023-10-05 13:29:31 +00:00
<p>Well draw this data into comparison with later sets in the next chapter. But the one glaring issue which remains for our chart is that its lacking in really any aesthetic refinements. This is where <code>ggplot</code> really shines as a tool as you can add all sorts of things.</p>
<p>The <code>ggplot</code> tool works by stacking additional elements on to your original plot using <code>+</code>. So, for example, lets say we want to improve the colours used for our bars. You can specify the formatting for the fill on the <code>scale</code> by tacking on <code>scale_fill_brewer</code>. This uses a particular tool (and a personal favourite of mine) called <code>colorbrewer</code>. Part of my appreciation of this tool is that you can pick colours which are not just visually pleasing, and produce useful contrast / complementary schemes, but you can also work proactively to accommodate colourblindness. Working with colour schemes which can be divergent in a visually obvious way will be even more important when we work on geospatial data and maps in a later chapter.</p>
2023-10-05 13:29:31 +00:00
<div class="cell">
2024-02-13 14:28:18 +00:00
<div class="sourceCode cell-code" id="cb15"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb15-1"><a href="#cb15-1" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(uk_census_2021_religion_merged, <span class="fu">aes</span>(<span class="at">fill=</span>dataset, <span class="at">x=</span>key, <span class="at">y=</span>perc)) <span class="sc">+</span> <span class="fu">geom_bar</span>(<span class="at">position=</span><span class="st">"dodge"</span>, <span class="at">stat =</span><span class="st">"identity"</span>) <span class="sc">+</span> <span class="fu">scale_fill_brewer</span>(<span class="at">palette =</span> <span class="st">"Set1"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2023-10-05 13:29:31 +00:00
<div class="cell-output-display">
2024-02-13 14:28:18 +00:00
<div>
<figure class="figure">
<p><img src="chapter_1_files/figure-html/unnamed-chunk-14-1.png" class="img-fluid figure-img" width="672"></p>
</figure>
</div>
2023-10-05 13:29:31 +00:00
</div>
</div>
<p>We might also want to add a border to our bars to make them more visually striking (notice the addition of <code>color</code> to the geom_bar below. Ive also added <code>reorder()</code> to the x value to sort descending from the largest to smallest.</p>
2024-02-13 14:28:18 +00:00
<div class="page-columns page-full"><p></p><div class="no-row-height column-margin column-container"><span class="margin-aside">You can find more information about reordering ggplots on the <a href="https://r-graph-gallery.com/267-reorder-a-variable-in-ggplot2.html">R Graph gallery</a>.</span></div></div>
2023-10-05 13:29:31 +00:00
<div class="cell">
2024-02-13 14:28:18 +00:00
<div class="sourceCode cell-code" id="cb16"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb16-1"><a href="#cb16-1" aria-hidden="true" tabindex="-1"></a>uk_census_2021_religion_merged<span class="sc">$</span>dataset <span class="ot">&lt;-</span> <span class="fu">factor</span>(uk_census_2021_religion_merged<span class="sc">$</span>dataset, <span class="at">levels =</span> <span class="fu">c</span>(<span class="st">'wmids'</span>, <span class="st">'totals'</span>))</span>
<span id="cb16-2"><a href="#cb16-2" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(uk_census_2021_religion_merged, <span class="fu">aes</span>(<span class="at">fill=</span><span class="fu">fct_reorder</span>(dataset, value), <span class="at">x=</span><span class="fu">reorder</span>(key,<span class="sc">-</span>value),value, <span class="at">y=</span>perc)) <span class="sc">+</span> <span class="fu">geom_bar</span>(<span class="at">position=</span><span class="st">"dodge"</span>, <span class="at">stat =</span><span class="st">"identity"</span>, <span class="at">colour =</span> <span class="st">"black"</span>) <span class="sc">+</span> <span class="fu">scale_fill_brewer</span>(<span class="at">palette =</span> <span class="st">"Set1"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2023-10-05 13:29:31 +00:00
<div class="cell-output-display">
2024-02-13 14:28:18 +00:00
<div>
<figure class="figure">
<p><img src="chapter_1_files/figure-html/unnamed-chunk-15-1.png" class="img-fluid figure-img" width="672"></p>
</figure>
</div>
2023-10-05 13:29:31 +00:00
</div>
</div>
2024-02-13 14:28:18 +00:00
<p>We can fine tune a few other visual features here as well, like adding a title with <code>ggtitle</code> and some prettier fonts with <code>theme_ipsum()</code> (which requires the <code>hrbrthemes()</code> library). We can also remove the x and y axis labels (not the data labels, which are rather important).</p>
2023-10-05 13:29:31 +00:00
<div class="cell">
2024-02-13 14:28:18 +00:00
<div class="sourceCode cell-code" id="cb17"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb17-1"><a href="#cb17-1" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(uk_census_2021_religion_merged, <span class="fu">aes</span>(<span class="at">fill=</span><span class="fu">fct_reorder</span>(dataset, value), <span class="at">x=</span><span class="fu">reorder</span>(key,<span class="sc">-</span>value),value, <span class="at">y=</span>perc)) <span class="sc">+</span> <span class="fu">geom_bar</span>(<span class="at">position=</span><span class="st">"dodge"</span>, <span class="at">stat =</span><span class="st">"identity"</span>, <span class="at">colour =</span> <span class="st">"black"</span>) <span class="sc">+</span> <span class="fu">scale_fill_brewer</span>(<span class="at">palette =</span> <span class="st">"Set1"</span>) <span class="sc">+</span> <span class="fu">ggtitle</span>(<span class="st">"Religious Affiliation in the UK: 2021"</span>) <span class="sc">+</span> <span class="fu">xlab</span>(<span class="st">""</span>) <span class="sc">+</span> <span class="fu">ylab</span>(<span class="st">""</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2023-10-05 13:29:31 +00:00
<div class="cell-output-display">
2024-02-13 14:28:18 +00:00
<div>
<figure class="figure">
<p><img src="chapter_1_files/figure-html/unnamed-chunk-16-1.png" class="img-fluid figure-img" width="672"></p>
</figure>
</div>
2023-10-05 13:29:31 +00:00
</div>
</div>
<p>Its also a bit hard to read our Y-axis labels with everything getting cramped down there, so lets rotate that text to 180 degrees so those labels are clear:</p>
<div class="cell">
<div class="sourceCode cell-code" id="cb18"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb18-1"><a href="#cb18-1" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(uk_census_2021_religion_merged, <span class="fu">aes</span>(<span class="at">fill=</span><span class="fu">fct_reorder</span>(dataset, value), <span class="at">x=</span><span class="fu">reorder</span>(key,<span class="sc">-</span>value),value, <span class="at">y=</span>perc)) <span class="sc">+</span> <span class="fu">geom_bar</span>(<span class="at">position=</span><span class="st">"dodge"</span>, <span class="at">stat =</span><span class="st">"identity"</span>, <span class="at">colour =</span> <span class="st">"black"</span>) <span class="sc">+</span> <span class="fu">scale_fill_brewer</span>(<span class="at">palette =</span> <span class="st">"Set1"</span>) <span class="sc">+</span> <span class="fu">ggtitle</span>(<span class="st">"Religious Affiliation in the UK: 2021"</span>) <span class="sc">+</span> <span class="fu">xlab</span>(<span class="st">""</span>) <span class="sc">+</span> <span class="fu">ylab</span>(<span class="st">""</span>) <span class="sc">+</span> <span class="fu">theme</span>(<span class="at">axis.text.x =</span> <span class="fu">element_text</span>(<span class="at">angle =</span> <span class="dv">90</span>, <span class="at">vjust =</span> <span class="fl">0.5</span>, <span class="at">hjust=</span><span class="dv">1</span>))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output-display">
<div>
<figure class="figure">
<p><img src="chapter_1_files/figure-html/unnamed-chunk-17-1.png" class="img-fluid figure-img" width="672"></p>
</figure>
</div>
</div>
</div>
2023-10-05 13:29:31 +00:00
</section>
</section>
2024-02-15 12:36:03 +00:00
<section id="telling-the-truth-in-data-science-is-your-chart-accurate" class="level1" data-number="7">
<h1 data-number="7"><span class="header-section-number">7</span> Telling the truth in data science: Is your chart accurate?</h1>
<p>If youve been following along up until this point, youll have produced a fairly complete data visualisation for the UK census. There is some technical work yet to be done fine-tuning the visualisation of our chart here, but Id like to pause for a moment and consider an ethical question drawn from the principles I outlined in the introduction: is the title of this chart truthful and accurate?</p>
<p>On one hand, it is a straight-forward reference to the nature of the question asked on the 2021 census survey instrument, e.g.&nbsp;something like “what is your religious affiliation”. However, as you will see in the next chapter, other large data sets from the same year which involved a similar question yielded different results. Part of this could be attributed to the amount of non-respose to this specific question which, in the 2021 census is between 5-6% across many demographics. Its possible (though perhaps unlikely) that all those non-responses were (to pick one random example) Jedi religion practitioners who felt uncomfortable identifying themselves on such a census survey. If even half of the non-responses were of this nature, this would dramatically shift the results especially in comparison to other minority groups. So there is some work for us to do here in representing non-response as a category on the census.</p>
<p>Its equally possible that someone might feel uncertain when answering, but nonetheless land on a particular decision marking “Christian” when they wondered if they should instead tick “no religion. Some surveys attempt to capture uncertainty in this way, asking respondents to mark how confident they are about their answers, or allowing respondents to choose multiple answers, but the makers of the census made a specific choice not to capture this so we simply dont know. Its possible that a large portion of respondents in the”Christian” category were hovering between this and another response and they might shift their answers when responding on a different day or in the context of a particular experience like a good or bad day attending church, or perhaps having just had a conversation with a friend which shifted their thinking.</p>
<p>Even the inertia of survey design can have an effect on this, so responding to other questions in a particular way, thinking about ethnic identity, for example, can prime a person to think about their religious identity in a different or more focussed way, altering their response to the question. If someone were to ask you on a survey “are you hungry” you might say “no,” but if theyd previously asked you a hundred questions about your favourite pizza toppings you might have been primed to think about food and when you arrive at the same question, even at the same time in the day, your answer would be an enthusiastic “yes”. This can be the case for some ethnicity and religion pairings which may have priming interrelations, which well explore a bit more in the next chapter.</p>
2024-02-13 14:28:18 +00:00
<p>Given this challenge, some survey instruments randomise the order of questions. This hasnt been done on the census (which would have been quite hard work given that most of the instruments were printed hard copies!), so again, we cant really be sure if those answers given are stable in such a way.</p>
<p>Finally, researchers have also found that when people are asked to mark their religious affiliation, sometimes they can prefer to mark more than one answer. A person might consider themselves to be “Muslim” but also “Spiritual but not religious” preferring the combination of those identities. It is also the case that respondents do in practice identify with less expected hybrid religious identities as well, such as “Christian” and “Hindu”. One might assume that these are different religions without many doctrinal overlaps, but researchers have found that in actual practice, its perfectly possible for some people to inhabit two or more categories which the researcher might assume are opposed.</p>
2024-02-13 14:28:18 +00:00
<p>The UK census only allows respondents to tick a single box for the religion category. It is worth noting that, in contrast, the responses for ethnicity allow for combinations. Given that this is the case, its impossible to know which way a person went at the fork in the road as they were forced to choose just one half of this kind of hybrid identity. Did they feel a bit more Buddhist that day? Or spiritual?</p>
<p>Finally, it is interesting for us to consider exactly what it means for a person when they tick a box like this. The census doesnt specify how one should calculate the basis of your participation. Is it because they attend synagogue on a weekly basis? Some persons would consider weekly attendance at workship a prerequisite for membership in a group, but others would not. Indeed we can infer from surveys and research which aims to track rates of participation in weekly worship that many people who tick boxes for particular religious identities on the census have never attended a worship service at all.</p>
<p>What does this mean for our results? Are they completely unreliable and invalid? I dont think this is the case or that taking a clear-eyed look at the force and stability of our underlying data should be cause for despair. Instead, the most appropriate response is humility. Someone has made a statement which is recorded in the census, of this we can be sure. They felt it to be an accurate response on some level based on the information they had at the time. And with regard to the census, it is a massive dataset, covering much of the population, and this large sample size does afford some additional validity. The easiest way to represent all this reality in the form of speaking truthfully about our data is to acknowledge that however valid it may seem, it is nonetheless a snapshot. For this reason, I would always advise that the best title for a chart is one which specifies the data set.</p>
<p>So if we are going to fine-tune our visuals to ensure they comport with our hacker principles and speak truthfully, we should also probably do something different with those non-responses:</p>
2023-10-05 13:29:31 +00:00
<div class="cell">
<div class="sourceCode cell-code" id="cb19"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb19-1"><a href="#cb19-1" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(uk_census_2021_religion_merged, <span class="fu">aes</span>(<span class="at">fill=</span><span class="fu">fct_reorder</span>(dataset, value), <span class="at">x=</span><span class="fu">reorder</span>(key,<span class="sc">-</span>value),value, <span class="at">y=</span>perc)) <span class="sc">+</span> <span class="fu">geom_bar</span>(<span class="at">position=</span><span class="st">"dodge"</span>, <span class="at">stat =</span><span class="st">"identity"</span>, <span class="at">colour =</span> <span class="st">"black"</span>) <span class="sc">+</span> <span class="fu">scale_fill_brewer</span>(<span class="at">palette =</span> <span class="st">"Set1"</span>) <span class="sc">+</span> <span class="fu">ggtitle</span>(<span class="st">"Religious Affiliation in the 2021 Census of England and Wales"</span>) <span class="sc">+</span> <span class="fu">xlab</span>(<span class="st">""</span>) <span class="sc">+</span> <span class="fu">ylab</span>(<span class="st">""</span>) <span class="sc">+</span> <span class="fu">theme</span>(<span class="at">axis.text.x =</span> <span class="fu">element_text</span>(<span class="at">angle =</span> <span class="dv">90</span>, <span class="at">vjust =</span> <span class="fl">0.5</span>, <span class="at">hjust=</span><span class="dv">1</span>))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2023-10-05 13:29:31 +00:00
<div class="cell-output-display">
2024-02-13 14:28:18 +00:00
<div>
<figure class="figure">
<p><img src="chapter_1_files/figure-html/unnamed-chunk-18-1.png" class="img-fluid figure-img" width="672"></p>
2024-02-13 14:28:18 +00:00
</figure>
</div>
2023-10-05 13:29:31 +00:00
</div>
</div>
2023-10-05 13:42:06 +00:00
</section>
<section id="multifactor-visualisation" class="level1" data-number="8">
2024-02-15 12:36:03 +00:00
<h1 data-number="8"><span class="header-section-number">8</span> Multifactor Visualisation</h1>
<p>One element of R data analysis of census datasets that can get really interesting is working with multiple variables. Above weve looked at the breakdown of religious affiliation across the whole of England and Wales (Scotland operates an independent census so we havent included it here) and by placing this data alongside a specific region, weve already made a basic entry into working with multiple variables but this can get much more interesting. Adding an additional quantitative variable (also known as bivariate data when you have <em>two</em> variables) into the mix, however can also generate a lot more information and we have to think about visualising it in different ways which can still communicate with visual clarity in spite of the additional visual noise which is inevitable with enhanced complexity. Lets have a look at the way that religion in England and Wales breaks down by ethnicity.</p>
2023-10-07 18:01:40 +00:00
<div class="callout callout-style-default callout-tip callout-titled">
2024-02-15 12:30:17 +00:00
<div class="callout-header d-flex align-content-center" data-bs-toggle="collapse" data-bs-target=".callout-1-contents" aria-controls="callout-1" aria-expanded="false" aria-label="Toggle callout">
2023-10-07 18:01:40 +00:00
<div class="callout-icon-container">
<i class="callout-icon"></i>
</div>
<div class="callout-title-container flex-fill">
What is Nomis?
</div>
2024-02-15 12:30:17 +00:00
<div class="callout-btn-toggle d-inline-block border-0 py-1 ps-1 pe-0 float-end"><i class="callout-toggle"></i></div>
2023-10-07 18:01:40 +00:00
</div>
2024-02-15 12:30:17 +00:00
<div id="callout-1" class="callout-1-contents callout-collapse collapse">
2023-10-07 18:01:40 +00:00
<div class="callout-body-container callout-body">
<p>For the UK, census data is made available for programmatic research like this via an organisation called NOMIS. Luckily for us, there is an R library you can use to access nomis directly which greatly simplifies the process of pulling data down from the platform. Its worth noting that if youre not in the UK, there are similar options for other countries. Nearly every R textbook Ive ever seen works with USA census data (which is part of the reason Ive taken the opportunity to work with a different national census dataset here in this book), so youll find plenty of documentation available on the tools you can use for US Census data. Similarly for the EU, Canada, Austrailia etc.</p>
2024-02-13 14:28:18 +00:00
<p>If you want to draw some data from the nomis platform yourself in R, have a look at the nomis script in our <a href="https://github.com/kidwellj/hacking_religion_cookbook/blob/main/nomis.R">companion cookbook repository</a>. For now, well provide some data extracts for you to use.</p>
</div>
2023-10-07 18:01:40 +00:00
</div>
2024-02-15 12:30:17 +00:00
</div>
2024-02-13 14:28:18 +00:00
<p>Lets start by loading in some of the enhanced tables from nomis with the 2021 religion / ethnicity tables:</p>
<div class="cell">
<div class="sourceCode cell-code" id="cb20"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb20-1"><a href="#cb20-1" aria-hidden="true" tabindex="-1"></a>nomis_extract_census2021 <span class="ot">&lt;-</span> <span class="fu">readRDS</span>(<span class="at">file =</span> (<span class="fu">here</span>(<span class="st">"example_data"</span>, <span class="st">"nomis_extract_census2021.rds"</span>)))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2023-10-07 18:01:40 +00:00
</div>
2024-02-13 14:28:18 +00:00
<p>Im hoping that readers of this book will feel free to pause along the way and “hack” the code to explore questions of their own, perhaps in this case probing the NOMIS data for answers to their own questions. If I tidy things up too much, however, youre likely to be surprised when you get to the real life data sets. So that you can use the code in this book in a reproducible way, Ive started this exercise with what is a more or less raw dump from NOMIS. This means that the data is a bit messy and needs to be filtered down quite a bit so that it only includes the basic stuff that wed like to examine for this particular question. The upside of this is that you can modify this code to draw in different columns etc.</p>
<div class="cell">
<div class="sourceCode cell-code" id="annotated-cell-23"><pre class="sourceCode r code-annotation-code code-with-copy code-annotated"><code class="sourceCode r"><a class="code-annotation-anchor" data-target-cell="annotated-cell-23" data-target-annotation="1" onclick="event.preventDefault();">1</a><span id="annotated-cell-23-1" class="code-annotation-target"><a href="#annotated-cell-23-1" aria-hidden="true" tabindex="-1"></a>uk_census_2021_religion_ethnicity <span class="ot">&lt;-</span> <span class="fu">select</span>(nomis_extract_census2021, GEOGRAPHY_NAME, C2021_RELIGION_10_NAME, C2021_ETH_8_NAME, OBS_VALUE)</span>
<span id="annotated-cell-23-2"><a href="#annotated-cell-23-2" aria-hidden="true" tabindex="-1"></a></span>
<a class="code-annotation-anchor" data-target-cell="annotated-cell-23" data-target-annotation="2" onclick="event.preventDefault();">2</a><span id="annotated-cell-23-3" class="code-annotation-target"><a href="#annotated-cell-23-3" aria-hidden="true" tabindex="-1"></a>uk_census_2021_religion_ethnicity <span class="ot">&lt;-</span> <span class="fu">filter</span>(uk_census_2021_religion_ethnicity, GEOGRAPHY_NAME<span class="sc">==</span><span class="st">"England and Wales"</span> <span class="sc">&amp;</span> C2021_RELIGION_10_NAME <span class="sc">!=</span> <span class="st">"Total"</span> <span class="sc">&amp;</span> C2021_ETH_8_NAME <span class="sc">!=</span> <span class="st">"Total"</span>)</span>
<span id="annotated-cell-23-4"><a href="#annotated-cell-23-4" aria-hidden="true" tabindex="-1"></a></span>
<a class="code-annotation-anchor" data-target-cell="annotated-cell-23" data-target-annotation="3" onclick="event.preventDefault();">3</a><span id="annotated-cell-23-5" class="code-annotation-target"><a href="#annotated-cell-23-5" aria-hidden="true" tabindex="-1"></a>uk_census_2021_religion_ethnicity <span class="ot">&lt;-</span> <span class="fu">filter</span>(uk_census_2021_religion_ethnicity, C2021_ETH_8_NAME <span class="sc">!=</span> <span class="st">"White: English, Welsh, Scottish, Northern Irish or British"</span> <span class="sc">&amp;</span> C2021_ETH_8_NAME <span class="sc">!=</span> <span class="st">"White: Irish"</span> <span class="sc">&amp;</span> C2021_ETH_8_NAME <span class="sc">!=</span> <span class="st">"White: Gypsy or Irish Traveller, Roma or Other White"</span>)</span>
<span id="annotated-cell-23-6"><a href="#annotated-cell-23-6" aria-hidden="true" tabindex="-1"></a></span>
<span id="annotated-cell-23-7"><a href="#annotated-cell-23-7" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(uk_census_2021_religion_ethnicity, <span class="fu">aes</span>(<span class="at">fill=</span>C2021_ETH_8_NAME, <span class="at">x=</span>C2021_RELIGION_10_NAME, <span class="at">y=</span>OBS_VALUE)) <span class="sc">+</span></span>
<span id="annotated-cell-23-8"><a href="#annotated-cell-23-8" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_bar</span>(<span class="at">position=</span><span class="st">"dodge"</span>, <span class="at">stat =</span><span class="st">"identity"</span>, <span class="at">colour =</span> <span class="st">"black"</span>) <span class="sc">+</span> </span>
<span id="annotated-cell-23-9"><a href="#annotated-cell-23-9" aria-hidden="true" tabindex="-1"></a> <span class="fu">scale_fill_brewer</span>(<span class="at">palette =</span> <span class="st">"Set1"</span>) <span class="sc">+</span> </span>
<span id="annotated-cell-23-10"><a href="#annotated-cell-23-10" aria-hidden="true" tabindex="-1"></a> <span class="fu">ggtitle</span>(<span class="st">"Religious Affiliation in the 2021 Census of England and Wales"</span>) <span class="sc">+</span> </span>
<span id="annotated-cell-23-11"><a href="#annotated-cell-23-11" aria-hidden="true" tabindex="-1"></a> <span class="fu">xlab</span>(<span class="st">""</span>) <span class="sc">+</span> <span class="fu">ylab</span>(<span class="st">""</span>) <span class="sc">+</span> </span>
<a class="code-annotation-anchor" data-target-cell="annotated-cell-23" data-target-annotation="4" onclick="event.preventDefault();">4</a><span id="annotated-cell-23-12" class="code-annotation-target"><a href="#annotated-cell-23-12" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">axis.text.x =</span> <span class="fu">element_text</span>(<span class="at">angle =</span> <span class="dv">90</span>, <span class="at">vjust =</span> <span class="fl">0.5</span>, <span class="at">hjust=</span><span class="dv">1</span>))</span><div class="code-annotation-gutter-bg"></div><div class="code-annotation-gutter"></div></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2024-02-13 14:28:18 +00:00
<div class="cell-annotation">
<dl class="code-annotation-container-grid">
<dt data-target-cell="annotated-cell-23" data-target-annotation="1">1</dt>
2024-02-13 14:28:18 +00:00
<dd>
<span data-code-cell="annotated-cell-23" data-code-lines="1" data-code-annotation="1">Select relevant columns</span>
2024-02-13 14:28:18 +00:00
</dd>
<dt data-target-cell="annotated-cell-23" data-target-annotation="2">2</dt>
2024-02-13 14:28:18 +00:00
<dd>
<span data-code-cell="annotated-cell-23" data-code-lines="3" data-code-annotation="2">Filter down to simplified dataset with England / Wales and percentages without totals</span>
2024-02-13 14:28:18 +00:00
</dd>
<dt data-target-cell="annotated-cell-23" data-target-annotation="3">3</dt>
2024-02-13 14:28:18 +00:00
<dd>
<span data-code-cell="annotated-cell-23" data-code-lines="5" data-code-annotation="3">The 2021 census data includes white sub-groups so we need to omit those</span>
2024-02-13 14:28:18 +00:00
</dd>
<dt data-target-cell="annotated-cell-23" data-target-annotation="4">4</dt>
2024-02-13 14:28:18 +00:00
<dd>
<span data-code-cell="annotated-cell-23" data-code-lines="12" data-code-annotation="4">Lets plot it out and see how things look!</span>
2024-02-13 14:28:18 +00:00
</dd>
</dl>
</div>
<div class="cell-output-display">
2024-02-13 14:28:18 +00:00
<div>
<figure class="figure">
<p><img src="chapter_1_files/figure-html/unnamed-chunk-20-1.png" class="img-fluid figure-img" width="672"></p>
2024-02-13 14:28:18 +00:00
</figure>
</div>
</div>
</div>
2024-02-15 12:30:17 +00:00
<p>The trouble with using grouped bars here, as you can see, is that there are quite sharp disparities which make it hard to compare in meaningful ways. We could use <a href="https://en.wikipedia.org/wiki/Logarithm#Probability_theory_and_statistics">logarithmic</a> rather than linear scaling as an option, but this is hard for many general public audiences to appreciate without guidance. One alternative quick fix is to extract data from “white” respondents which can then be placed in a separate chart with a different scale.</p>
<div class="callout callout-style-default callout-note callout-titled">
<div class="callout-header d-flex align-content-center" data-bs-toggle="collapse" data-bs-target=".callout-2-contents" aria-controls="callout-2" aria-expanded="false" aria-label="Toggle callout">
<div class="callout-icon-container">
<i class="callout-icon"></i>
2023-10-05 13:42:06 +00:00
</div>
2024-02-15 12:30:17 +00:00
<div class="callout-title-container flex-fill">
Statistics 101: Logarithmic Visualisation
2023-10-05 13:42:06 +00:00
</div>
2024-02-15 12:30:17 +00:00
<div class="callout-btn-toggle d-inline-block border-0 py-1 ps-1 pe-0 float-end"><i class="callout-toggle"></i></div>
</div>
<div id="callout-2" class="callout-2-contents callout-collapse collapse">
<div class="callout-body-container callout-body">
<p>Usually, when we display data we think of numbers in a linear way, that is, each centimetre of the x-axis on our chart represents the same quantity as the cm above and below it. This is generally a preferred way to display data, and as close to a “common sense” way of showing things as we might get. However, this kind of linear visualisation works best only in cases where the difference between one category on our chart and the next is relatively uniform. This is, for the most part, the case with our charts above. However, weve hit another scenario here, the difference between the “White” subcategory and all the others is large enough that those other four categories arent really easily perceived on our chart. One way to address this is to leave behind a linear approach to displaying that x-axis data. What if, for example, each step up on our chart didnt represent the same amount of value, e.g.&nbsp;10, 20, 30, 40, 50 etc. but instead represented an increase which followed orders of magnitude, so something more like 10, 100, 1000, 10000, etc. Thats the essence of a logarithmic visualisation, which can much more easily display data that has a very large range or with disparities from one category to another.</p>
2024-02-15 12:30:17 +00:00
</div>
</div>
</div>
<div class="cell">
<div class="sourceCode cell-code" id="annotated-cell-24"><pre class="sourceCode r code-annotation-code code-with-copy code-annotated"><code class="sourceCode r"><a class="code-annotation-anchor" data-target-cell="annotated-cell-24" data-target-annotation="1" onclick="event.preventDefault();">1</a><span id="annotated-cell-24-1" class="code-annotation-target"><a href="#annotated-cell-24-1" aria-hidden="true" tabindex="-1"></a>uk_census_2021_religion_ethnicity_white <span class="ot">&lt;-</span> <span class="fu">filter</span>(uk_census_2021_religion_ethnicity, C2021_ETH_8_NAME <span class="sc">==</span> <span class="st">"White"</span>)</span>
<span id="annotated-cell-24-2"><a href="#annotated-cell-24-2" aria-hidden="true" tabindex="-1"></a></span>
<a class="code-annotation-anchor" data-target-cell="annotated-cell-24" data-target-annotation="2" onclick="event.preventDefault();">2</a><span id="annotated-cell-24-3" class="code-annotation-target"><a href="#annotated-cell-24-3" aria-hidden="true" tabindex="-1"></a>uk_census_2021_religion_ethnicity_nonwhite <span class="ot">&lt;-</span> <span class="fu">filter</span>(uk_census_2021_religion_ethnicity, C2021_ETH_8_NAME <span class="sc">!=</span> <span class="st">"White"</span>)</span>
<span id="annotated-cell-24-4"><a href="#annotated-cell-24-4" aria-hidden="true" tabindex="-1"></a></span>
<a class="code-annotation-anchor" data-target-cell="annotated-cell-24" data-target-annotation="3" onclick="event.preventDefault();">3</a><span id="annotated-cell-24-5" class="code-annotation-target"><a href="#annotated-cell-24-5" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(uk_census_2021_religion_ethnicity_nonwhite, <span class="fu">aes</span>(<span class="at">fill=</span>C2021_ETH_8_NAME, <span class="at">x=</span>C2021_RELIGION_10_NAME, <span class="at">y=</span>OBS_VALUE)) <span class="sc">+</span> <span class="fu">geom_bar</span>(<span class="at">position=</span><span class="st">"dodge"</span>, <span class="at">stat =</span><span class="st">"identity"</span>, <span class="at">colour =</span> <span class="st">"black"</span>) <span class="sc">+</span> <span class="fu">scale_fill_brewer</span>(<span class="at">palette =</span> <span class="st">"Set1"</span>) <span class="sc">+</span> <span class="fu">ggtitle</span>(<span class="st">"Religious Affiliation in the 2021 Census of England and Wales"</span>) <span class="sc">+</span> <span class="fu">xlab</span>(<span class="st">""</span>) <span class="sc">+</span> <span class="fu">ylab</span>(<span class="st">""</span>) <span class="sc">+</span> <span class="fu">theme</span>(<span class="at">axis.text.x =</span> <span class="fu">element_text</span>(<span class="at">angle =</span> <span class="dv">90</span>, <span class="at">vjust =</span> <span class="fl">0.5</span>, <span class="at">hjust=</span><span class="dv">1</span>))</span><div class="code-annotation-gutter-bg"></div><div class="code-annotation-gutter"></div></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2024-02-13 14:28:18 +00:00
<div class="cell-annotation">
<dl class="code-annotation-container-grid">
<dt data-target-cell="annotated-cell-24" data-target-annotation="1">1</dt>
2024-02-13 14:28:18 +00:00
<dd>
<span data-code-cell="annotated-cell-24" data-code-lines="1" data-code-annotation="1">Filter down to simplified dataset with England / Wales and percentages without totals</span>
2024-02-13 14:28:18 +00:00
</dd>
<dt data-target-cell="annotated-cell-24" data-target-annotation="2">2</dt>
2024-02-13 14:28:18 +00:00
<dd>
<span data-code-cell="annotated-cell-24" data-code-lines="3" data-code-annotation="2">Filtering with <code>!=</code> allows us to create a subset where that response is excluded</span>
2024-02-13 14:28:18 +00:00
</dd>
<dt data-target-cell="annotated-cell-24" data-target-annotation="3">3</dt>
2024-02-13 14:28:18 +00:00
<dd>
<span data-code-cell="annotated-cell-24" data-code-lines="5" data-code-annotation="3">Lets plot it out and see where weve gotten to!</span>
2024-02-13 14:28:18 +00:00
</dd>
</dl>
</div>
<div class="cell-output-display">
2024-02-13 14:28:18 +00:00
<div>
<figure class="figure">
<p><img src="chapter_1_files/figure-html/unnamed-chunk-21-1.png" class="img-fluid figure-img" width="672"></p>
2024-02-13 14:28:18 +00:00
</figure>
</div>
</div>
</div>
<p>As youll notice, this is a bit better, but this still doesnt quite render with as much visual clarity and communication as Id like. Another approach we can take is to represent each bar as a percentage of the total for that ethnicity subgroup rather than as raw values. We can do this by adding an extra step to our visualisation drawing on the mutate() function which enables us to create a series of groups based on a specific column (e.g.&nbsp;C2021_ETH_8_NAME) and then create an additional column in our dataframe which represents values within each of our groups as percentages of the total rather than raw values:</p>
2023-10-05 13:42:06 +00:00
<div class="cell">
<div class="sourceCode cell-code" id="cb21"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb21-1"><a href="#cb21-1" aria-hidden="true" tabindex="-1"></a>uk_census_2021_religion_ethnicity_percents <span class="ot">&lt;-</span> uk_census_2021_religion_ethnicity <span class="sc">%&gt;%</span></span>
<span id="cb21-2"><a href="#cb21-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">group_by</span>(C2021_ETH_8_NAME) <span class="sc">%&gt;%</span></span>
<span id="cb21-3"><a href="#cb21-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">Percentage =</span> OBS_VALUE <span class="sc">/</span> <span class="fu">sum</span>(OBS_VALUE) <span class="sc">*</span> <span class="dv">100</span>)</span>
<span id="cb21-4"><a href="#cb21-4" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb21-5"><a href="#cb21-5" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(uk_census_2021_religion_ethnicity_percents, <span class="fu">aes</span>(<span class="at">fill=</span>C2021_ETH_8_NAME, <span class="at">x=</span>C2021_RELIGION_10_NAME, <span class="at">y=</span>Percentage)) <span class="sc">+</span></span>
<span id="cb21-6"><a href="#cb21-6" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_bar</span>(<span class="at">position=</span><span class="st">"dodge"</span>, <span class="at">stat =</span><span class="st">"identity"</span>, <span class="at">colour =</span> <span class="st">"black"</span>) <span class="sc">+</span> </span>
<span id="cb21-7"><a href="#cb21-7" aria-hidden="true" tabindex="-1"></a> <span class="fu">scale_fill_brewer</span>(<span class="at">palette =</span> <span class="st">"Set1"</span>) <span class="sc">+</span> </span>
<span id="cb21-8"><a href="#cb21-8" aria-hidden="true" tabindex="-1"></a> <span class="fu">ggtitle</span>(<span class="st">"Religious Affiliation in the 2021 Census of England and Wales"</span>) <span class="sc">+</span> </span>
<span id="cb21-9"><a href="#cb21-9" aria-hidden="true" tabindex="-1"></a> <span class="fu">xlab</span>(<span class="st">""</span>) <span class="sc">+</span> <span class="fu">ylab</span>(<span class="st">""</span>) <span class="sc">+</span> </span>
<span id="cb21-10"><a href="#cb21-10" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">axis.text.x =</span> <span class="fu">element_text</span>(<span class="at">angle =</span> <span class="dv">90</span>, <span class="at">vjust =</span> <span class="fl">0.5</span>, <span class="at">hjust=</span><span class="dv">1</span>))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2023-10-05 13:42:06 +00:00
<div class="cell-output-display">
2024-02-13 14:28:18 +00:00
<div>
<figure class="figure">
<p><img src="chapter_1_files/figure-html/unnamed-chunk-22-1.png" class="img-fluid figure-img" width="672"></p>
</figure>
</div>
</div>
</div>
<p>As you can see, this gives us a really different sense of representation within each group. Another option we can use here is a technique in R called “faceting” which creates a series of small charts which can be viewed alongside one another. This is just intended to whet you appetite for facetted plots, so I wont break down all the separate elements in great detail as there are other guides which will walk you through the full details of how to use this technique if you want to do a deep dive. For now, youll want to observe that weve augmented the <code>ggplot</code> with a new element called <code>facet_wrap</code> which takes the ethnicity data column as the basis for rendering separate charts.</p>
<div class="cell">
<div class="sourceCode cell-code" id="cb22"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb22-1"><a href="#cb22-1" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(uk_census_2021_religion_ethnicity_nonwhite, <span class="fu">aes</span>(<span class="at">x=</span>C2021_RELIGION_10_NAME, <span class="at">y=</span>OBS_VALUE)) <span class="sc">+</span> </span>
<span id="cb22-2"><a href="#cb22-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_bar</span>(<span class="at">position=</span><span class="st">"dodge"</span>, <span class="at">stat =</span><span class="st">"identity"</span>, <span class="at">colour =</span> <span class="st">"black"</span>) <span class="sc">+</span> </span>
<span id="cb22-3"><a href="#cb22-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">facet_wrap</span>(<span class="sc">~</span>C2021_ETH_8_NAME, <span class="at">ncol =</span> <span class="dv">2</span>) <span class="sc">+</span> <span class="fu">scale_fill_brewer</span>(<span class="at">palette =</span> <span class="st">"Set1"</span>) <span class="sc">+</span> </span>
<span id="cb22-4"><a href="#cb22-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">ggtitle</span>(<span class="st">"Religious Affiliation in the 2021 Census of England and Wales"</span>) <span class="sc">+</span> <span class="fu">xlab</span>(<span class="st">""</span>) <span class="sc">+</span> <span class="fu">ylab</span>(<span class="st">""</span>) <span class="sc">+</span> </span>
<span id="cb22-5"><a href="#cb22-5" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">axis.text.x =</span> <span class="fu">element_text</span>(<span class="at">angle =</span> <span class="dv">90</span>, <span class="at">vjust =</span> <span class="fl">0.5</span>, <span class="at">hjust=</span><span class="dv">1</span>))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
<div class="cell-output-display">
<div>
<figure class="figure">
<p><img src="chapter_1_files/figure-html/unnamed-chunk-23-1.png" class="img-fluid figure-img" width="672"></p>
2024-02-13 14:28:18 +00:00
</figure>
</div>
</div>
</div>
<p>Thats a bit better! Now we have a much more accessible set of visual information which compares across categories and renders most of the information were trying to capture.</p>
<p>To take this chart just one step further, Id like to take the faceted chart weve just done and add in totals for the previous two census years (2001 and 2011) so we can see how trends are changing in terms of religious affiliation within ethnic self-identification categories. Well draw on some techniques were already developed above using <code>rbind()</code> to connect up each of these charts (after weve added a column identifying each chart by the census year). We will also need to use one new technique to change the wording of ethnic categories as this isnt consistent from one census to the next and ggplot will struggle to chart things if the terms being used are exactly the same. Well use <code>mutate()</code> again to accomplish this with some slightly different code.</p>
<p>First we need to get the tables of Census 2011 and 2001 religion data from nomis:</p>
<div class="cell">
<div class="sourceCode cell-code" id="cb23"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb23-1"><a href="#cb23-1" aria-hidden="true" tabindex="-1"></a>nomis_extract_census2001 <span class="ot">&lt;-</span> <span class="fu">readRDS</span>(<span class="at">file =</span> (<span class="fu">here</span>(<span class="st">"example_data"</span>, <span class="st">"nomis_extract_census2001.rds"</span>)))</span>
<span id="cb23-2"><a href="#cb23-2" aria-hidden="true" tabindex="-1"></a>nomis_extract_census2011 <span class="ot">&lt;-</span> <span class="fu">readRDS</span>(<span class="at">file =</span> (<span class="fu">here</span>(<span class="st">"example_data"</span>, <span class="st">"nomis_extract_census2011.rds"</span>)))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2024-02-13 14:28:18 +00:00
</div>
<p>Next, as weve already done above, we need to filter and tidy the tables:</p>
<div class="cell">
<div class="sourceCode cell-code" id="annotated-cell-28"><pre class="sourceCode r code-annotation-code code-with-copy code-annotated"><code class="sourceCode r"><a class="code-annotation-anchor" data-target-cell="annotated-cell-28" data-target-annotation="1" onclick="event.preventDefault();">1</a><span id="annotated-cell-28-1" class="code-annotation-target"><a href="#annotated-cell-28-1" aria-hidden="true" tabindex="-1"></a>uk_census_2001_religion_ethnicity <span class="ot">&lt;-</span> <span class="fu">select</span>(nomis_extract_census2001, GEOGRAPHY_NAME, C_RELPUK11_NAME, C_ETHHUK11_NAME, OBS_VALUE)</span>
<span id="annotated-cell-28-2"><a href="#annotated-cell-28-2" aria-hidden="true" tabindex="-1"></a>uk_census_2011_religion_ethnicity <span class="ot">&lt;-</span> <span class="fu">select</span>(nomis_extract_census2011, GEOGRAPHY_NAME, C_RELPUK11_NAME, C_ETHPUK11_NAME, OBS_VALUE)</span>
<a class="code-annotation-anchor" data-target-cell="annotated-cell-28" data-target-annotation="2" onclick="event.preventDefault();">2</a><span id="annotated-cell-28-3" class="code-annotation-target"><a href="#annotated-cell-28-3" aria-hidden="true" tabindex="-1"></a>uk_census_2001_religion_ethnicity <span class="ot">&lt;-</span> <span class="fu">filter</span>(uk_census_2001_religion_ethnicity, GEOGRAPHY_NAME<span class="sc">==</span><span class="st">"England and Wales"</span> <span class="sc">&amp;</span> C_RELPUK11_NAME <span class="sc">!=</span> <span class="st">"All categories: Religion"</span>)</span>
<span id="annotated-cell-28-4"><a href="#annotated-cell-28-4" aria-hidden="true" tabindex="-1"></a>uk_census_2011_religion_ethnicity <span class="ot">&lt;-</span> <span class="fu">filter</span>(uk_census_2011_religion_ethnicity, GEOGRAPHY_NAME<span class="sc">==</span><span class="st">"England and Wales"</span> <span class="sc">&amp;</span> C_RELPUK11_NAME <span class="sc">!=</span> <span class="st">"All categories: Religion"</span> <span class="sc">&amp;</span> C_ETHPUK11_NAME <span class="sc">!=</span> <span class="st">"All categories: Ethnic group"</span>)</span>
<a class="code-annotation-anchor" data-target-cell="annotated-cell-28" data-target-annotation="3" onclick="event.preventDefault();">3</a><span id="annotated-cell-28-5" class="code-annotation-target"><a href="#annotated-cell-28-5" aria-hidden="true" tabindex="-1"></a>uk_census_2001_religion_ethnicity <span class="ot">&lt;-</span> uk_census_2001_religion_ethnicity <span class="sc">%&gt;%</span> <span class="fu">filter</span>(<span class="fu">grepl</span>(<span class="st">'Total'</span>, C_ETHHUK11_NAME))</span>
<span id="annotated-cell-28-6"><a href="#annotated-cell-28-6" aria-hidden="true" tabindex="-1"></a>uk_census_2011_religion_ethnicity <span class="ot">&lt;-</span> uk_census_2011_religion_ethnicity <span class="sc">%&gt;%</span> <span class="fu">filter</span>(<span class="fu">grepl</span>(<span class="st">'Total'</span>, C_ETHPUK11_NAME))</span>
<span id="annotated-cell-28-7"><a href="#annotated-cell-28-7" aria-hidden="true" tabindex="-1"></a>uk_census_2011_religion_plot <span class="ot">&lt;-</span> <span class="fu">ggplot</span>(uk_census_2011_religion_ethnicity, <span class="fu">aes</span>(<span class="at">x =</span> C_RELPUK11_NAME, <span class="at">y =</span> OBS_VALUE)) <span class="sc">+</span> <span class="fu">geom_bar</span>(<span class="at">stat =</span> <span class="st">"identity"</span>) <span class="sc">+</span> <span class="fu">theme</span>(<span class="at">axis.text.x =</span> <span class="fu">element_text</span>(<span class="at">angle =</span> <span class="dv">90</span>, <span class="at">vjust =</span> <span class="fl">0.5</span>, <span class="at">hjust=</span><span class="dv">1</span>))</span><div class="code-annotation-gutter-bg"></div><div class="code-annotation-gutter"></div></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2024-02-13 14:28:18 +00:00
<div class="cell-annotation">
<dl class="code-annotation-container-grid">
<dt data-target-cell="annotated-cell-28" data-target-annotation="1">1</dt>
2024-02-13 14:28:18 +00:00
<dd>
<span data-code-cell="annotated-cell-28" data-code-lines="1,2" data-code-annotation="1">Select columns</span>
2024-02-13 14:28:18 +00:00
</dd>
<dt data-target-cell="annotated-cell-28" data-target-annotation="2">2</dt>
2024-02-13 14:28:18 +00:00
<dd>
<span data-code-cell="annotated-cell-28" data-code-lines="3,4" data-code-annotation="2">Filter down to simplified dataset with England / Wales and percentages without totals</span>
2024-02-13 14:28:18 +00:00
</dd>
<dt data-target-cell="annotated-cell-28" data-target-annotation="3">3</dt>
2024-02-13 14:28:18 +00:00
<dd>
<span data-code-cell="annotated-cell-28" data-code-lines="5,6" data-code-annotation="3">Drop unnecessary columns</span>
2024-02-13 14:28:18 +00:00
</dd>
</dl>
</div>
2023-10-07 18:01:40 +00:00
</div>
<p>The <code>bind</code> tool were going to use is very picky and expects everything to match perfectly so that it doesnt join up data that is unrelated. Unfortunately, the census table data format has changed in each decade, so we need to harmonise the column titles so that we can join the data and avoid confusing R. This is a pretty common problem youll face in working with multiple datasets in the same chart, so well worth noticing the extra necessary step here.</p>
2024-02-13 14:28:18 +00:00
<div class="cell">
<div class="sourceCode cell-code" id="annotated-cell-29"><pre class="sourceCode r code-annotation-code code-with-copy code-annotated"><code class="sourceCode r"><a class="code-annotation-anchor" data-target-cell="annotated-cell-29" data-target-annotation="1" onclick="event.preventDefault();">1</a><span id="annotated-cell-29-1" class="code-annotation-target"><a href="#annotated-cell-29-1" aria-hidden="true" tabindex="-1"></a>uk_census_2001_religion_ethnicity<span class="sc">$</span>dataset <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="st">"2001"</span>)</span>
<span id="annotated-cell-29-2"><a href="#annotated-cell-29-2" aria-hidden="true" tabindex="-1"></a>uk_census_2011_religion_ethnicity<span class="sc">$</span>dataset <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="st">"2011"</span>)</span>
<span id="annotated-cell-29-3"><a href="#annotated-cell-29-3" aria-hidden="true" tabindex="-1"></a>uk_census_2021_religion_ethnicity<span class="sc">$</span>dataset <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="st">"2021"</span>)</span>
<span id="annotated-cell-29-4"><a href="#annotated-cell-29-4" aria-hidden="true" tabindex="-1"></a></span>
<a class="code-annotation-anchor" data-target-cell="annotated-cell-29" data-target-annotation="2" onclick="event.preventDefault();">2</a><span id="annotated-cell-29-5" class="code-annotation-target"><a href="#annotated-cell-29-5" aria-hidden="true" tabindex="-1"></a><span class="fu">names</span>(uk_census_2001_religion_ethnicity) <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="st">"Geography"</span>, <span class="st">"Religion"</span>, <span class="st">"Ethnicity"</span>, <span class="st">"Value"</span>, <span class="st">"Year"</span>)</span>
<span id="annotated-cell-29-6"><a href="#annotated-cell-29-6" aria-hidden="true" tabindex="-1"></a><span class="fu">names</span>(uk_census_2011_religion_ethnicity) <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="st">"Geography"</span>, <span class="st">"Religion"</span>, <span class="st">"Ethnicity"</span>, <span class="st">"Value"</span>, <span class="st">"Year"</span>)</span>
<span id="annotated-cell-29-7"><a href="#annotated-cell-29-7" aria-hidden="true" tabindex="-1"></a><span class="fu">names</span>(uk_census_2021_religion_ethnicity) <span class="ot">&lt;-</span> <span class="fu">c</span>(<span class="st">"Geography"</span>, <span class="st">"Religion"</span>, <span class="st">"Ethnicity"</span>, <span class="st">"Value"</span>, <span class="st">"Year"</span>)</span><div class="code-annotation-gutter-bg"></div><div class="code-annotation-gutter"></div></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2024-02-13 14:28:18 +00:00
<div class="cell-annotation">
<dl class="code-annotation-container-grid">
<dt data-target-cell="annotated-cell-29" data-target-annotation="1">1</dt>
2024-02-13 14:28:18 +00:00
<dd>
<span data-code-cell="annotated-cell-29" data-code-lines="1,2,3" data-code-annotation="1">First we add a column to each dataframe letting us know which census year it is from so we dont lose track of the census it comes from when theyre all combined into a single table.</span>
2024-02-13 14:28:18 +00:00
</dd>
<dt data-target-cell="annotated-cell-29" data-target-annotation="2">2</dt>
2024-02-13 14:28:18 +00:00
<dd>
<span data-code-cell="annotated-cell-29" data-code-lines="5,6,7" data-code-annotation="2">Next, we tidy the <code>names</code> of each column by overwriting them all with more legible versions.</span>
2024-02-13 14:28:18 +00:00
</dd>
</dl>
</div>
</div>
<p>Now that we have column titles all sorted, we also need to adjust the category descriptions as the formatting has also changed in subsequent decades. To do this, well use the very handy tool <code>mutate</code> which is a bit like a “find and replace text” tool in R:</p>
<div class="cell">
<div class="sourceCode cell-code" id="cb24"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb24-1"><a href="#cb24-1" aria-hidden="true" tabindex="-1"></a><span class="co"># Next we need to change the terms using mutate()</span></span>
<span id="cb24-2"><a href="#cb24-2" aria-hidden="true" tabindex="-1"></a>uk_census_2001_religion_ethnicity <span class="ot">&lt;-</span> uk_census_2001_religion_ethnicity <span class="sc">%&gt;%</span> </span>
<span id="cb24-3"><a href="#cb24-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">Ethnicity =</span> <span class="fu">str_replace_all</span>(Ethnicity, </span>
<span id="cb24-4"><a href="#cb24-4" aria-hidden="true" tabindex="-1"></a> <span class="at">pattern =</span> <span class="st">"^White: Total$"</span>, <span class="at">replacement =</span> <span class="st">"White"</span>)) <span class="sc">%&gt;%</span></span>
<span id="cb24-5"><a href="#cb24-5" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">Ethnicity =</span> <span class="fu">str_replace_all</span>(Ethnicity, </span>
<span id="cb24-6"><a href="#cb24-6" aria-hidden="true" tabindex="-1"></a> <span class="at">pattern =</span> <span class="st">"^Mixed: Total$"</span>, <span class="at">replacement =</span> <span class="st">"Mixed"</span>)) <span class="sc">%&gt;%</span></span>
<span id="cb24-7"><a href="#cb24-7" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">Ethnicity =</span> <span class="fu">str_replace_all</span>(Ethnicity, </span>
<span id="cb24-8"><a href="#cb24-8" aria-hidden="true" tabindex="-1"></a> <span class="at">pattern =</span> <span class="st">"^Asian: Total$"</span>, <span class="at">replacement =</span> <span class="st">"Asian"</span>)) <span class="sc">%&gt;%</span></span>
<span id="cb24-9"><a href="#cb24-9" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">Ethnicity =</span> <span class="fu">str_replace_all</span>(Ethnicity, </span>
<span id="cb24-10"><a href="#cb24-10" aria-hidden="true" tabindex="-1"></a> <span class="at">pattern =</span> <span class="st">"^Black or Black British: Total$"</span>, <span class="at">replacement =</span> <span class="st">"Black"</span>)) <span class="sc">%&gt;%</span></span>
<span id="cb24-11"><a href="#cb24-11" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">Ethnicity =</span> <span class="fu">str_replace_all</span>(Ethnicity, </span>
<span id="cb24-12"><a href="#cb24-12" aria-hidden="true" tabindex="-1"></a> <span class="at">pattern =</span> <span class="st">"^Chinese or Other ethnic group: Total$"</span>, <span class="at">replacement =</span> <span class="st">"Other"</span>))</span>
<span id="cb24-13"><a href="#cb24-13" aria-hidden="true" tabindex="-1"></a> </span>
<span id="cb24-14"><a href="#cb24-14" aria-hidden="true" tabindex="-1"></a>uk_census_2011_religion_ethnicity <span class="ot">&lt;-</span> uk_census_2011_religion_ethnicity <span class="sc">%&gt;%</span> </span>
<span id="cb24-15"><a href="#cb24-15" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">Ethnicity =</span> <span class="fu">str_replace_all</span>(Ethnicity, </span>
<span id="cb24-16"><a href="#cb24-16" aria-hidden="true" tabindex="-1"></a> <span class="at">pattern =</span> <span class="st">"^White: Total$"</span>, <span class="at">replacement =</span> <span class="st">"White"</span>)) <span class="sc">%&gt;%</span></span>
<span id="cb24-17"><a href="#cb24-17" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">Ethnicity =</span> <span class="fu">str_replace_all</span>(Ethnicity, </span>
<span id="cb24-18"><a href="#cb24-18" aria-hidden="true" tabindex="-1"></a> <span class="at">pattern =</span> <span class="st">"^Mixed/multiple ethnic group: Total$"</span>, <span class="at">replacement =</span> <span class="st">"Mixed"</span>)) <span class="sc">%&gt;%</span></span>
<span id="cb24-19"><a href="#cb24-19" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">Ethnicity =</span> <span class="fu">str_replace_all</span>(Ethnicity, </span>
<span id="cb24-20"><a href="#cb24-20" aria-hidden="true" tabindex="-1"></a> <span class="at">pattern =</span> <span class="st">"^Asian/Asian British: Total$"</span>, <span class="at">replacement =</span> <span class="st">"Asian"</span>)) <span class="sc">%&gt;%</span></span>
<span id="cb24-21"><a href="#cb24-21" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">Ethnicity =</span> <span class="fu">str_replace_all</span>(Ethnicity, </span>
<span id="cb24-22"><a href="#cb24-22" aria-hidden="true" tabindex="-1"></a> <span class="at">pattern =</span> <span class="st">"^Black/African/Caribbean/Black British: Total$"</span>, <span class="at">replacement =</span> <span class="st">"Black"</span>)) <span class="sc">%&gt;%</span></span>
<span id="cb24-23"><a href="#cb24-23" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">Ethnicity =</span> <span class="fu">str_replace_all</span>(Ethnicity, </span>
<span id="cb24-24"><a href="#cb24-24" aria-hidden="true" tabindex="-1"></a> <span class="at">pattern =</span> <span class="st">"^Other ethnic group: Total$"</span>, <span class="at">replacement =</span> <span class="st">"Other"</span>))</span>
<span id="cb24-25"><a href="#cb24-25" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb24-26"><a href="#cb24-26" aria-hidden="true" tabindex="-1"></a>uk_census_2021_religion_ethnicity <span class="ot">&lt;-</span> uk_census_2021_religion_ethnicity <span class="sc">%&gt;%</span> </span>
<span id="cb24-27"><a href="#cb24-27" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">Ethnicity =</span> <span class="fu">str_replace_all</span>(Ethnicity, </span>
<span id="cb24-28"><a href="#cb24-28" aria-hidden="true" tabindex="-1"></a> <span class="at">pattern =</span> <span class="st">"^White: Total$"</span>, <span class="at">replacement =</span> <span class="st">"White"</span>)) <span class="sc">%&gt;%</span></span>
<span id="cb24-29"><a href="#cb24-29" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">Ethnicity =</span> <span class="fu">str_replace_all</span>(Ethnicity, </span>
<span id="cb24-30"><a href="#cb24-30" aria-hidden="true" tabindex="-1"></a> <span class="at">pattern =</span> <span class="st">"^Mixed or Multiple ethnic groups$"</span>, <span class="at">replacement =</span> <span class="st">"Mixed"</span>)) <span class="sc">%&gt;%</span></span>
<span id="cb24-31"><a href="#cb24-31" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">Ethnicity =</span> <span class="fu">str_replace_all</span>(Ethnicity, </span>
<span id="cb24-32"><a href="#cb24-32" aria-hidden="true" tabindex="-1"></a> <span class="at">pattern =</span> <span class="st">"^Asian, Asian British or Asian Welsh$"</span>, <span class="at">replacement =</span> <span class="st">"Asian"</span>)) <span class="sc">%&gt;%</span></span>
<span id="cb24-33"><a href="#cb24-33" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">Ethnicity =</span> <span class="fu">str_replace_all</span>(Ethnicity, </span>
<span id="cb24-34"><a href="#cb24-34" aria-hidden="true" tabindex="-1"></a> <span class="at">pattern =</span> <span class="st">"^Black, Black British, Black Welsh, Caribbean or African$"</span>, <span class="at">replacement =</span> <span class="st">"Black"</span>)) <span class="sc">%&gt;%</span></span>
<span id="cb24-35"><a href="#cb24-35" aria-hidden="true" tabindex="-1"></a> <span class="fu">mutate</span>(<span class="at">Ethnicity =</span> <span class="fu">str_replace_all</span>(Ethnicity, </span>
<span id="cb24-36"><a href="#cb24-36" aria-hidden="true" tabindex="-1"></a> <span class="at">pattern =</span> <span class="st">"^Other ethnic group$"</span>, <span class="at">replacement =</span> <span class="st">"Other"</span>))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2023-10-07 18:01:40 +00:00
</div>
2024-02-13 14:28:18 +00:00
<p>Now that we have all the columns and data in formats which will match for merge, letd do the merge! This is only two (rather than three operations) as we combine 2021 and 2011 and then do a second combine that grafts in the 2001 data:</p>
2023-10-07 18:01:40 +00:00
<div class="cell">
<div class="sourceCode cell-code" id="cb25"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb25-1"><a href="#cb25-1" aria-hidden="true" tabindex="-1"></a>uk_census_merged_religion_ethnicity <span class="ot">&lt;-</span> <span class="fu">rbind</span>(uk_census_2021_religion_ethnicity, uk_census_2011_religion_ethnicity)</span>
<span id="cb25-2"><a href="#cb25-2" aria-hidden="true" tabindex="-1"></a>uk_census_merged_religion_ethnicity <span class="ot">&lt;-</span> <span class="fu">rbind</span>(uk_census_merged_religion_ethnicity, uk_census_2001_religion_ethnicity)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2024-02-13 14:28:18 +00:00
</div>
<p>As we realised in the work above, we need to split out non-white and white data so that the data is visually comprehensible:</p>
<div class="cell">
<div class="sourceCode cell-code" id="cb26"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb26-1"><a href="#cb26-1" aria-hidden="true" tabindex="-1"></a>uk_census_merged_religion_ethnicity_nonwhite <span class="ot">&lt;-</span> <span class="fu">filter</span>(uk_census_merged_religion_ethnicity, Ethnicity <span class="sc">!=</span> <span class="st">"White"</span>)</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2024-02-13 14:28:18 +00:00
</div>
<p>Hopefully if everything went properly, we can now do an initial <code>ggplot</code> to see how things look side-by-side:</p>
<div class="cell">
<div class="sourceCode cell-code" id="cb27"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb27-1"><a href="#cb27-1" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(uk_census_merged_religion_ethnicity_nonwhite, <span class="fu">aes</span>(<span class="at">fill=</span>Year, <span class="at">x=</span>Religion, <span class="at">y=</span>Value)) <span class="sc">+</span> </span>
<span id="cb27-2"><a href="#cb27-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_bar</span>(<span class="at">position=</span><span class="st">"dodge"</span>, <span class="at">stat =</span><span class="st">"identity"</span>, <span class="at">colour =</span> <span class="st">"black"</span>) <span class="sc">+</span> </span>
<span id="cb27-3"><a href="#cb27-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">facet_wrap</span>(<span class="sc">~</span>Ethnicity, <span class="at">ncol =</span> <span class="dv">2</span>) <span class="sc">+</span> </span>
<span id="cb27-4"><a href="#cb27-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">scale_fill_brewer</span>(<span class="at">palette =</span> <span class="st">"Set1"</span>) <span class="sc">+</span> </span>
<span id="cb27-5"><a href="#cb27-5" aria-hidden="true" tabindex="-1"></a> <span class="fu">ggtitle</span>(<span class="st">"Religious Affiliation in the 2001-2021 Census of England and Wales"</span>) <span class="sc">+</span> </span>
<span id="cb27-6"><a href="#cb27-6" aria-hidden="true" tabindex="-1"></a> <span class="fu">xlab</span>(<span class="st">""</span>) <span class="sc">+</span> <span class="fu">ylab</span>(<span class="st">""</span>) <span class="sc">+</span> </span>
<span id="cb27-7"><a href="#cb27-7" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">axis.text.x =</span> <span class="fu">element_text</span>(<span class="at">angle =</span> <span class="dv">90</span>, <span class="at">vjust =</span> <span class="fl">0.5</span>, <span class="at">hjust=</span><span class="dv">1</span>))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2023-10-07 18:01:40 +00:00
<div class="cell-output-display">
2024-02-13 14:28:18 +00:00
<div>
<figure class="figure">
<p><img src="chapter_1_files/figure-html/unnamed-chunk-30-1.png" class="img-fluid figure-img" width="672"></p>
2024-02-13 14:28:18 +00:00
</figure>
2023-10-07 18:01:40 +00:00
</div>
2023-10-05 13:42:06 +00:00
</div>
2024-02-13 14:28:18 +00:00
</div>
<p>Were getting there, but as you can see there are a few formatting issues which remain. Our y-axis number labels are in scientific format which isnt easy to read. You can use the very powerful and flexible <code>scales()</code> library to bring in some more readable formatting of numbers in a variety of places in R including in ggplot visualizations.</p>
2023-10-07 18:01:40 +00:00
<div class="cell">
<div class="sourceCode cell-code" id="cb28"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb28-1"><a href="#cb28-1" aria-hidden="true" tabindex="-1"></a><span class="fu">library</span>(scales) <span class="sc">|&gt;</span> <span class="fu">suppressPackageStartupMessages</span>()</span>
<span id="cb28-2"><a href="#cb28-2" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(uk_census_merged_religion_ethnicity_nonwhite, <span class="fu">aes</span>(<span class="at">fill=</span>Year, <span class="at">x=</span>Religion, <span class="at">y=</span>Value)) <span class="sc">+</span> <span class="fu">geom_bar</span>(<span class="at">position=</span><span class="st">"dodge"</span>, <span class="at">stat =</span><span class="st">"identity"</span>, <span class="at">colour =</span> <span class="st">"black"</span>) <span class="sc">+</span> <span class="fu">facet_wrap</span>(<span class="sc">~</span>Ethnicity, <span class="at">ncol =</span> <span class="dv">2</span>) <span class="sc">+</span> <span class="fu">scale_fill_brewer</span>(<span class="at">palette =</span> <span class="st">"Set1"</span>) <span class="sc">+</span> <span class="fu">scale_y_continuous</span>(<span class="at">labels =</span> <span class="fu">unit_format</span>(<span class="at">unit =</span> <span class="st">"M"</span>, <span class="at">scale =</span> <span class="fl">1e-6</span>), <span class="at">breaks =</span> <span class="fu">breaks_extended</span>(<span class="dv">8</span>)) <span class="sc">+</span> <span class="fu">ggtitle</span>(<span class="st">"Religious Affiliation in the 2001-2021 Census of England and Wales"</span>) <span class="sc">+</span> <span class="fu">xlab</span>(<span class="st">""</span>) <span class="sc">+</span> <span class="fu">ylab</span>(<span class="st">""</span>) <span class="sc">+</span> <span class="fu">theme</span>(<span class="at">axis.text.x =</span> <span class="fu">element_text</span>(<span class="at">angle =</span> <span class="dv">90</span>, <span class="at">vjust =</span> <span class="fl">0.5</span>, <span class="at">hjust=</span><span class="dv">1</span>))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2023-10-07 18:01:40 +00:00
<div class="cell-output-display">
2024-02-13 14:28:18 +00:00
<div>
<figure class="figure">
<p><img src="chapter_1_files/figure-html/unnamed-chunk-31-1.png" class="img-fluid figure-img" width="672"></p>
2024-02-13 14:28:18 +00:00
</figure>
</div>
2023-10-07 18:01:40 +00:00
</div>
</div>
2024-02-13 14:28:18 +00:00
<p>This chart shows an increase in almost every category for each decade, though its a bit hard to read in some cases. However, if we attend to our hacker principles, theres another element here which can produce some misleading information. Consider for a moment how this information is based on the increase in <em>raw numbers</em>. Its possbile that the numbers for each religion category may be going up, but population levels are also rising, and its possible here that the percentage share for a particular category may have gone up a bit less than population increase, e.g.&nbsp;the share of the population for that category has actually gone <em>down</em>. This is easy to fix and provide some more accurate information by normalising those figures based on the share of overall population for each decade. Lets transform and visualise our data as percentages to see what kind of trends we can actually isolate:</p>
2023-10-07 18:01:40 +00:00
<div class="cell">
<div class="sourceCode cell-code" id="cb29"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb29-1"><a href="#cb29-1" aria-hidden="true" tabindex="-1"></a>uk_census_merged_religion_ethnicity <span class="ot">&lt;-</span> uk_census_merged_religion_ethnicity <span class="sc">%&gt;%</span></span>
<span id="cb29-2"><a href="#cb29-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">group_by</span>(Ethnicity, Year) <span class="sc">%&gt;%</span></span>
<span id="cb29-3"><a href="#cb29-3" aria-hidden="true" tabindex="-1"></a> dplyr<span class="sc">::</span><span class="fu">mutate</span>(<span class="at">Percent =</span> Value<span class="sc">/</span><span class="fu">sum</span>(Value))</span>
<span id="cb29-4"><a href="#cb29-4" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb29-5"><a href="#cb29-5" aria-hidden="true" tabindex="-1"></a><span class="fu">ggplot</span>(uk_census_merged_religion_ethnicity, <span class="fu">aes</span>(<span class="at">fill=</span>Year, <span class="at">x=</span>Religion, <span class="at">y=</span>Percent)) <span class="sc">+</span> <span class="fu">geom_bar</span>(<span class="at">position=</span><span class="st">"dodge"</span>, <span class="at">stat =</span><span class="st">"identity"</span>, <span class="at">colour =</span> <span class="st">"black"</span>) <span class="sc">+</span> <span class="fu">facet_wrap</span>(<span class="sc">~</span>Ethnicity, <span class="at">scales=</span><span class="st">"free_x"</span>) <span class="sc">+</span> <span class="fu">scale_fill_brewer</span>(<span class="at">palette =</span> <span class="st">"Set1"</span>) <span class="sc">+</span> <span class="fu">scale_y_continuous</span>(<span class="at">labels =</span> scales<span class="sc">::</span>percent) <span class="sc">+</span> <span class="fu">ggtitle</span>(<span class="st">"Religious Affiliation in the 2001-2021 Censuses of England and Wales"</span>) <span class="sc">+</span> <span class="fu">xlab</span>(<span class="st">""</span>) <span class="sc">+</span> <span class="fu">ylab</span>(<span class="st">""</span>) <span class="sc">+</span> <span class="fu">theme</span>(<span class="at">axis.text.x =</span> <span class="fu">element_text</span>(<span class="at">angle =</span> <span class="dv">90</span>, <span class="at">vjust =</span> <span class="fl">0.5</span>, <span class="at">hjust=</span><span class="dv">1</span>))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2023-10-07 18:01:40 +00:00
<div class="cell-output-display">
2024-02-13 14:28:18 +00:00
<div>
<figure class="figure">
<p><img src="chapter_1_files/figure-html/unnamed-chunk-32-1.png" class="img-fluid figure-img" width="672"></p>
2024-02-13 14:28:18 +00:00
</figure>
</div>
2023-10-07 18:01:40 +00:00
</div>
</div>
<p>Now you can see why this shift is important - the visualisation tells a completely different story in some cases across the two different charts. In the first (working off raw numbers) we see a net increase in Christianity across all categories. But if we take into account the fact that the overall share of population is growing for each of these groups, their actual composition is changing in a different direction. The proportion of each group is declining across the three census periods (albeit with an exception for the “Other” category from 2011 to 2021).</p>
2024-02-13 14:28:18 +00:00
<p>To highlight a few of the technical features Ive added for this final plot, Ive used a specific feature within <code>facet_wrap</code> <code>scales = "free_x"</code> to let each of the individual facets adjust the total range on the x-axis. Since were looking at trends here and not absolute values, having correspondence across scales isnt important and this makes for something a bit more visually tidy. Ive also shifted the code for <code>scale_y_continuous</code> to render values as percentages (rather than millions).</p>
<p>In case you want to print this plot out and hang it on your wall, you can use the <code>ggsave</code> tool to render the chart as an image file which you can print or email to a friend (or professor!):</p>
2023-10-07 18:01:40 +00:00
<div class="cell">
<div class="sourceCode cell-code" id="cb30"><pre class="sourceCode r code-with-copy"><code class="sourceCode r"><span id="cb30-1"><a href="#cb30-1" aria-hidden="true" tabindex="-1"></a>uk_census_merged_religion_ethnicity_plot <span class="ot">&lt;-</span> <span class="fu">ggplot</span>(uk_census_merged_religion_ethnicity, <span class="fu">aes</span>(<span class="at">fill=</span>Year, <span class="at">x=</span>Religion, <span class="at">y=</span>Percent)) <span class="sc">+</span> </span>
<span id="cb30-2"><a href="#cb30-2" aria-hidden="true" tabindex="-1"></a> <span class="fu">geom_bar</span>(<span class="at">position=</span><span class="st">"dodge"</span>, <span class="at">stat =</span><span class="st">"identity"</span>, <span class="at">colour =</span> <span class="st">"black"</span>) <span class="sc">+</span> </span>
<span id="cb30-3"><a href="#cb30-3" aria-hidden="true" tabindex="-1"></a> <span class="fu">facet_wrap</span>(<span class="sc">~</span>Ethnicity, <span class="at">scales=</span><span class="st">"free_x"</span>) <span class="sc">+</span> </span>
<span id="cb30-4"><a href="#cb30-4" aria-hidden="true" tabindex="-1"></a> <span class="fu">scale_fill_brewer</span>(<span class="at">palette =</span> <span class="st">"Set1"</span>) <span class="sc">+</span> </span>
<span id="cb30-5"><a href="#cb30-5" aria-hidden="true" tabindex="-1"></a> <span class="fu">scale_y_continuous</span>(<span class="at">labels =</span> scales<span class="sc">::</span>percent) <span class="sc">+</span> </span>
<span id="cb30-6"><a href="#cb30-6" aria-hidden="true" tabindex="-1"></a> <span class="fu">ggtitle</span>(<span class="st">"Religious Affiliation in the 2001-2021 Censuses of England and Wales"</span>) <span class="sc">+</span> </span>
<span id="cb30-7"><a href="#cb30-7" aria-hidden="true" tabindex="-1"></a> <span class="fu">xlab</span>(<span class="st">""</span>) <span class="sc">+</span> <span class="fu">ylab</span>(<span class="st">""</span>) <span class="sc">+</span> </span>
<span id="cb30-8"><a href="#cb30-8" aria-hidden="true" tabindex="-1"></a> <span class="fu">theme</span>(<span class="at">axis.text.x =</span> <span class="fu">element_text</span>(<span class="at">angle =</span> <span class="dv">90</span>, <span class="at">vjust =</span> <span class="fl">0.5</span>, <span class="at">hjust=</span><span class="dv">1</span>))</span>
<span id="cb30-9"><a href="#cb30-9" aria-hidden="true" tabindex="-1"></a></span>
<span id="cb30-10"><a href="#cb30-10" aria-hidden="true" tabindex="-1"></a><span class="fu">ggsave</span>(<span class="st">"figures/chart.png"</span>, <span class="at">plot=</span>uk_census_merged_religion_ethnicity_plot, <span class="at">width =</span> <span class="dv">8</span>, <span class="at">height =</span> <span class="dv">10</span>, <span class="at">units=</span><span class="fu">c</span>(<span class="st">"in"</span>))</span></code><button title="Copy to Clipboard" class="code-copy-button"><i class="bi"></i></button></pre></div>
2023-10-05 13:29:31 +00:00
</div>
2024-02-13 14:28:18 +00:00
<p>Thats a pretty good days work. Weve covered bifactorial analysis of the census data, compared this across years, and checked in each case to be sure that were representing the data accurately in the various visual elements of our charts. For the next chapter, were going to explore a wider range of ways to measure and represent religion.</p>
2024-02-15 12:30:17 +00:00
<p>In the meantime, if you want to download the R code without all the commentary here so you can try running it in a browser, you can download that from the cookbook repository.</p>
2024-02-13 14:28:18 +00:00
<div id="refs" role="list">
2023-10-02 10:52:45 +00:00
</div>
</section>
</main> <!-- /main -->
<script id="quarto-html-after-body" type="application/javascript">
window.document.addEventListener("DOMContentLoaded", function (event) {
const toggleBodyColorMode = (bsSheetEl) => {
const mode = bsSheetEl.getAttribute("data-mode");
const bodyEl = window.document.querySelector("body");
if (mode === "dark") {
bodyEl.classList.add("quarto-dark");
bodyEl.classList.remove("quarto-light");
} else {
bodyEl.classList.add("quarto-light");
bodyEl.classList.remove("quarto-dark");
}
}
const toggleBodyColorPrimary = () => {
const bsSheetEl = window.document.querySelector("link#quarto-bootstrap");
if (bsSheetEl) {
toggleBodyColorMode(bsSheetEl);
}
}
toggleBodyColorPrimary();
const icon = "";
const anchorJS = new window.AnchorJS();
anchorJS.options = {
placement: 'right',
icon: icon
};
anchorJS.add('.anchored');
const isCodeAnnotation = (el) => {
for (const clz of el.classList) {
if (clz.startsWith('code-annotation-')) {
return true;
}
}
return false;
}
const clipboard = new window.ClipboardJS('.code-copy-button', {
text: function(trigger) {
const codeEl = trigger.previousElementSibling.cloneNode(true);
for (const childEl of codeEl.children) {
if (isCodeAnnotation(childEl)) {
childEl.remove();
}
}
return codeEl.innerText;
}
});
clipboard.on('success', function(e) {
// button target
const button = e.trigger;
// don't keep focus
button.blur();
// flash "checked"
button.classList.add('code-copy-button-checked');
var currentTitle = button.getAttribute("title");
button.setAttribute("title", "Copied!");
let tooltip;
if (window.bootstrap) {
button.setAttribute("data-bs-toggle", "tooltip");
button.setAttribute("data-bs-placement", "left");
button.setAttribute("data-bs-title", "Copied!");
tooltip = new bootstrap.Tooltip(button,
{ trigger: "manual",
customClass: "code-copy-button-tooltip",
offset: [0, -8]});
tooltip.show();
}
setTimeout(function() {
if (tooltip) {
tooltip.hide();
button.removeAttribute("data-bs-title");
button.removeAttribute("data-bs-toggle");
button.removeAttribute("data-bs-placement");
}
button.setAttribute("title", currentTitle);
button.classList.remove('code-copy-button-checked');
}, 1000);
// clear code selection
e.clearSelection();
});
var localhostRegex = new RegExp(/^(?:http|https):\/\/localhost\:?[0-9]*\//);
var mailtoRegex = new RegExp(/^mailto:/);
var filterRegex = new RegExp('/' + window.location.host + '/');
var isInternal = (href) => {
return filterRegex.test(href) || localhostRegex.test(href) || mailtoRegex.test(href);
}
// Inspect non-navigation links and adorn them if external
var links = window.document.querySelectorAll('a[href]:not(.nav-link):not(.navbar-brand):not(.toc-action):not(.sidebar-link):not(.sidebar-item-toggle):not(.pagination-link):not(.no-external):not([aria-hidden]):not(.dropdown-item):not(.quarto-navigation-tool)');
for (var i=0; i<links.length; i++) {
const link = links[i];
if (!isInternal(link.href)) {
// undo the damage that might have been done by quarto-nav.js in the case of
// links that we want to consider external
if (link.dataset.originalHref !== undefined) {
link.href = link.dataset.originalHref;
}
}
}
2024-02-13 14:28:18 +00:00
function tippyHover(el, contentFn, onTriggerFn, onUntriggerFn) {
2023-10-02 10:52:45 +00:00
const config = {
allowHTML: true,
maxWidth: 500,
delay: 100,
arrow: false,
appendTo: function(el) {
return el.parentElement;
},
interactive: true,
interactiveBorder: 10,
theme: 'quarto',
2024-02-13 14:28:18 +00:00
placement: 'bottom-start',
2023-10-02 10:52:45 +00:00
};
2024-02-13 14:28:18 +00:00
if (contentFn) {
config.content = contentFn;
}
if (onTriggerFn) {
config.onTrigger = onTriggerFn;
}
if (onUntriggerFn) {
config.onUntrigger = onUntriggerFn;
}
2023-10-02 10:52:45 +00:00
window.tippy(el, config);
}
const noterefs = window.document.querySelectorAll('a[role="doc-noteref"]');
for (var i=0; i<noterefs.length; i++) {
const ref = noterefs[i];
tippyHover(ref, function() {
// use id or data attribute instead here
let href = ref.getAttribute('data-footnote-href') || ref.getAttribute('href');
try { href = new URL(href).hash; } catch {}
const id = href.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
if (note) {
return note.innerHTML;
} else {
return "";
}
2023-10-02 10:52:45 +00:00
});
2024-02-13 14:28:18 +00:00
}
const xrefs = window.document.querySelectorAll('a.quarto-xref');
const processXRef = (id, note) => {
// Strip column container classes
const stripColumnClz = (el) => {
el.classList.remove("page-full", "page-columns");
if (el.children) {
for (const child of el.children) {
stripColumnClz(child);
}
}
}
stripColumnClz(note)
if (id === null || id.startsWith('sec-')) {
// Special case sections, only their first couple elements
const container = document.createElement("div");
if (note.children && note.children.length > 2) {
container.appendChild(note.children[0].cloneNode(true));
for (let i = 1; i < note.children.length; i++) {
const child = note.children[i];
if (child.tagName === "P" && child.innerText === "") {
continue;
} else {
container.appendChild(child.cloneNode(true));
break;
}
}
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(container);
}
return container.innerHTML
} else {
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(note);
}
return note.innerHTML;
}
} else {
// Remove any anchor links if they are present
const anchorLink = note.querySelector('a.anchorjs-link');
if (anchorLink) {
anchorLink.remove();
}
if (window.Quarto?.typesetMath) {
window.Quarto.typesetMath(note);
}
// TODO in 1.5, we should make sure this works without a callout special case
if (note.classList.contains("callout")) {
return note.outerHTML;
} else {
return note.innerHTML;
}
}
}
for (var i=0; i<xrefs.length; i++) {
const xref = xrefs[i];
tippyHover(xref, undefined, function(instance) {
instance.disable();
let url = xref.getAttribute('href');
let hash = undefined;
if (url.startsWith('#')) {
hash = url;
} else {
try { hash = new URL(url).hash; } catch {}
}
if (hash) {
const id = hash.replace(/^#\/?/, "");
const note = window.document.getElementById(id);
if (note !== null) {
try {
const html = processXRef(id, note.cloneNode(true));
instance.setContent(html);
} finally {
instance.enable();
instance.show();
}
} else {
// See if we can fetch this
fetch(url.split('#')[0])
.then(res => res.text())
.then(html => {
const parser = new DOMParser();
const htmlDoc = parser.parseFromString(html, "text/html");
const note = htmlDoc.getElementById(id);
if (note !== null) {
const html = processXRef(id, note);
instance.setContent(html);
}
}).finally(() => {
instance.enable();
instance.show();
});
}
} else {
// See if we can fetch a full url (with no hash to target)
// This is a special case and we should probably do some content thinning / targeting
fetch(url)
.then(res => res.text())
.then(html => {
const parser = new DOMParser();
const htmlDoc = parser.parseFromString(html, "text/html");
const note = htmlDoc.querySelector('main.content');
if (note !== null) {
// This should only happen for chapter cross references
// (since there is no id in the URL)
// remove the first header
if (note.children.length > 0 && note.children[0].tagName === "HEADER") {
note.children[0].remove();
}
const html = processXRef(null, note);
instance.setContent(html);
}
}).finally(() => {
instance.enable();
instance.show();
});
}
}, function(instance) {
});
2023-10-02 10:52:45 +00:00
}
let selectedAnnoteEl;
const selectorForAnnotation = ( cell, annotation) => {
let cellAttr = 'data-code-cell="' + cell + '"';
let lineAttr = 'data-code-annotation="' + annotation + '"';
const selector = 'span[' + cellAttr + '][' + lineAttr + ']';
return selector;
}
const selectCodeLines = (annoteEl) => {
const doc = window.document;
const targetCell = annoteEl.getAttribute("data-target-cell");
const targetAnnotation = annoteEl.getAttribute("data-target-annotation");
const annoteSpan = window.document.querySelector(selectorForAnnotation(targetCell, targetAnnotation));
const lines = annoteSpan.getAttribute("data-code-lines").split(",");
const lineIds = lines.map((line) => {
return targetCell + "-" + line;
})
let top = null;
let height = null;
let parent = null;
if (lineIds.length > 0) {
//compute the position of the single el (top and bottom and make a div)
const el = window.document.getElementById(lineIds[0]);
top = el.offsetTop;
height = el.offsetHeight;
parent = el.parentElement.parentElement;
if (lineIds.length > 1) {
const lastEl = window.document.getElementById(lineIds[lineIds.length - 1]);
const bottom = lastEl.offsetTop + lastEl.offsetHeight;
height = bottom - top;
}
if (top !== null && height !== null && parent !== null) {
// cook up a div (if necessary) and position it
let div = window.document.getElementById("code-annotation-line-highlight");
if (div === null) {
div = window.document.createElement("div");
div.setAttribute("id", "code-annotation-line-highlight");
div.style.position = 'absolute';
parent.appendChild(div);
}
div.style.top = top - 2 + "px";
div.style.height = height + 4 + "px";
2024-02-13 14:28:18 +00:00
div.style.left = 0;
2023-10-02 10:52:45 +00:00
let gutterDiv = window.document.getElementById("code-annotation-line-highlight-gutter");
if (gutterDiv === null) {
gutterDiv = window.document.createElement("div");
gutterDiv.setAttribute("id", "code-annotation-line-highlight-gutter");
gutterDiv.style.position = 'absolute';
const codeCell = window.document.getElementById(targetCell);
const gutter = codeCell.querySelector('.code-annotation-gutter');
gutter.appendChild(gutterDiv);
}
gutterDiv.style.top = top - 2 + "px";
gutterDiv.style.height = height + 4 + "px";
}
selectedAnnoteEl = annoteEl;
}
};
const unselectCodeLines = () => {
const elementsIds = ["code-annotation-line-highlight", "code-annotation-line-highlight-gutter"];
elementsIds.forEach((elId) => {
const div = window.document.getElementById(elId);
if (div) {
div.remove();
}
});
selectedAnnoteEl = undefined;
};
2024-02-13 14:28:18 +00:00
// Handle positioning of the toggle
window.addEventListener(
"resize",
throttle(() => {
elRect = undefined;
if (selectedAnnoteEl) {
selectCodeLines(selectedAnnoteEl);
}
}, 10)
);
function throttle(fn, ms) {
let throttle = false;
let timer;
return (...args) => {
if(!throttle) { // first call gets through
fn.apply(this, args);
throttle = true;
} else { // all the others get throttled
if(timer) clearTimeout(timer); // cancel #2
timer = setTimeout(() => {
fn.apply(this, args);
timer = throttle = false;
}, ms);
}
};
}
2023-10-02 10:52:45 +00:00
// Attach click handler to the DT
const annoteDls = window.document.querySelectorAll('dt[data-target-cell]');
for (const annoteDlNode of annoteDls) {
annoteDlNode.addEventListener('click', (event) => {
const clickedEl = event.target;
if (clickedEl !== selectedAnnoteEl) {
unselectCodeLines();
const activeEl = window.document.querySelector('dt[data-target-cell].code-annotation-active');
if (activeEl) {
activeEl.classList.remove('code-annotation-active');
}
selectCodeLines(clickedEl);
clickedEl.classList.add('code-annotation-active');
} else {
// Unselect the line
unselectCodeLines();
clickedEl.classList.remove('code-annotation-active');
}
});
}
const findCites = (el) => {
const parentEl = el.parentElement;
if (parentEl) {
const cites = parentEl.dataset.cites;
if (cites) {
return {
el,
cites: cites.split(' ')
};
} else {
return findCites(el.parentElement)
}
} else {
return undefined;
}
};
var bibliorefs = window.document.querySelectorAll('a[role="doc-biblioref"]');
for (var i=0; i<bibliorefs.length; i++) {
const ref = bibliorefs[i];
const citeInfo = findCites(ref);
if (citeInfo) {
tippyHover(citeInfo.el, function() {
var popup = window.document.createElement('div');
citeInfo.cites.forEach(function(cite) {
var citeDiv = window.document.createElement('div');
citeDiv.classList.add('hanging-indent');
citeDiv.classList.add('csl-entry');
var biblioDiv = window.document.getElementById('ref-' + cite);
if (biblioDiv) {
citeDiv.innerHTML = biblioDiv.innerHTML;
}
popup.appendChild(citeDiv);
});
return popup.innerHTML;
});
}
}
});
</script>
2024-02-15 12:30:17 +00:00
<script src="https://utteranc.es/client.js" repo="kidwellj/hacking_religion_textbook" issue-term="pathname" theme="github-light" crossorigin="anonymous" async="">
</script>
2023-10-02 10:52:45 +00:00
<nav class="page-navigation">
<div class="nav-page nav-page-previous">
<a href="./index.html" class="pagination-link" aria-label="Introduction: Hacking Religion">
2023-10-12 16:08:37 +00:00
<i class="bi bi-arrow-left-short"></i> <span class="nav-page-text">Introduction: Hacking Religion</span>
2023-10-02 10:52:45 +00:00
</a>
</div>
<div class="nav-page nav-page-next">
<a href="./chapter_2.html" class="pagination-link" aria-label="Different ways to measure religion using data science">
<span class="nav-page-text"><span class="chapter-number">2</span>&nbsp; <span class="chapter-title">Different ways to measure religion using data science</span></span> <i class="bi bi-arrow-right-short"></i>
2023-10-02 10:52:45 +00:00
</a>
</div>
</nav>
</div> <!-- /content -->
2024-02-13 14:28:18 +00:00
2023-10-02 10:52:45 +00:00
</body></html>